
Alpaquita Linux
Building Java applications with
Cloud Native Buildpacks

Alpaquita Linux
Revision 1.0
June 2024

Copyright © BellSoft Corporation 2018-2024.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com

Contents

1. Introduction 4

Cloud Native Buildpacks 4

Liberica JDK Lite 4

Liberica NIK 4

2. Image flavors 5

Choosing libc library 5

3. Building a Java application with Alpaquita Linux 6

4. Optimizing image with JLink 8

5. Building native image 9

6. Configuration options 10

1. Introduction

BellSoft provides Cloud Native Buildpacks images that contain the latest versions of Liberica JDK Lite
and Liberica NIK products specifically built and optimized for Alpaquita Linux. Alpaquita Linux is a full-
featured operating system shipped in two libc variants based on two different libc implementations,
namely glibc and musl. BellSoft provides images for both glibc and musl libc libraries.

Using Alpaquita Linux (musl) as a target image helps you create lightweight Docker images. For
example, the size of a Docker image for a basic Spring Boot application running Java 21, if using
standard paketobuildpacks/builder-jammy-tiny is about 250 MB, while using
bellsoft/buildpacks.builder:musl saves about 140 MB.

Cloud Native Buildpacks

Cloud Native Buildpacks (CNBs) transform your application source code into container images that can
run on any cloud.

Liberica JDK Lite

Liberica JDK Lite is a JDK optimized for cloud instances with a minimal footprint. It is a full-fledged, Java
SE-compliant runtime but much smaller than any standard Java distribution. Liberica JDK Lite has a
higher compression ratio for modules than a classic JDK, thus reducing static footprint. For more
information, see Liberica JDK Lite in the Choosing Liberica JDK flavor document.

Liberica NIK

Liberica Native Image Kit is a utility capable of converting your JVM-based application into a fully
compiled native executable ahead-of-time under the closed-world assumption with an almost instant
startup time. It optimizes resource consumption, minimizes the static footprint, and works on various
platforms, including lightweight musl-based Alpaquita Linux.

Introduction Chapter 1

4

https://bell-sw.com/
https://bell-sw.com/alpaquita-linux/
https://buildpacks.io/docs/
https://docs.bell-sw.com/liberica-jdk/21.0.3b10/how-to/choosing-flavor/#liberica-jdk-lite
https://bell-sw.com/liberica-native-image-kit/
https://bell-sw.com/alpaquita-linux/

2. Image flavors

When building images from BellSoft buildpacks, you can choose one of the latest JDK releases of 8, 11,
17 (default), and 21 JDK versions; 22 and 23 NIK versions as well as Alpaquita Linux based on glibc
and musl libraries. For the latest product release versions, see the following links:

• Liberica JDK Download Center.

• Liberica Native Image Kit Download Center.

• Alpaquita Linux Download Center.

Choosing libc library

If the size of the resulting image is important and the final application does not have native
components that require glibc, then choose musl. If you need higher performance with a slight
increase in size of the final image, it makes sense to consider using the glibc library. In addition, there
might be other considerations when choosing C runtime, such as licensing.

Image flavors Chapter 2

5

https://bell-sw.com/pages/downloads/#jdk-21-lts
https://bell-sw.com/pages/downloads/native-image-kit/#nik-23-(jdk-17)
https://bell-sw.com/pages/downloads/alpaquita/

3. Building a Java application with
Alpaquita Linux

To build a Java application for Alpaquita Linux with the default JDK version, run one of the following
commands within the root of your project. Make sure you choose the bellsoft builder and specify the
target C library.

Note:

A builder includes the buildpacks that will be used as well as the environment for
building your app. For more information about getting started with buildpacks, see
Build your very first application with buildpacks.

• Building a Java application with Alpaquita Linux (glibc)

pack build demo-app --builder bellsoft/buildpacks.builder:glibc --path .

• Building a Java application with Alpaquita Linux (musl)

pack build demo-app --builder bellsoft/buildpacks.builder:musl --path .

Where bellsoft/buildpacks.builder:<glibc/musl> is the BellSoft builder producing an
Alpaquita Linux image with the specified C library. You can also specify BellSoft builder as the default
one as follows:

pack config default-builder bellsoft/buildpacks.builder:musl

If you want to install a specific JVM feature version, use the BP_JVM_VERSION environment variable
that accepts the following JDK version values: 8, 11, 17, 21 (default is 17). For example:

pack build demo-app --builder bellsoft/buildpacks.builder:glibc --path . -env
BP_JVM_VERSION=21

To inspect the resulting image, check the stack, buildpacks participated in the build, etc. Run the
following command:

pack inspect demo-app

You can also check the Linux distro inside your Docker image as follows:

Building a Java application with Alpaquita Linux Chapter 3

6

https://buildpacks.io/docs/for-app-developers/tutorials/basic-app/

docker run --rm -it --entrypoint /bin/cat demo-app /etc/os-release

Then you can check the image size as follows:

docker image ls demo-app

To run the application, use the following Docker command:

docker run --rm -it demo-app

Building a Java application with Alpaquita Linux Chapter 3

7

4. Optimizing image with JLink

The JRE inside the resulting image can be optimized in size by using the jlink tool. To enable jlink,
set the environment variable BP_JVM_JLINK_ENABLED to true (default is false). In this case, jlink
generates a custom JRE with the following default options: --no-man-pages, --no-header-files,
--strip-debug, --compress=1. To change the options, use BP_JVM_JLINK_ARGS environment
variable. Check the jlink documentation for further information.

For example, the following command creates a new application image on Alpaquita Linux with a
custom JRE 21:

pack build demo-app --builder bellsoft/buildpacks.builder:musl --path . -env
BP_JVM_VERSION=21 -env BP_JVM_JLINK_ENABLED=true

The resulting image is usually smaller than the one with the default JRE.

Optimizing image with JLink Chapter 4

8

5. Building native image

To build the native image application, set the BP_NATIVE_IMAGE environment variable to true as in
the following example:

pack -v build demo-native-app --builder bellsoft/buildpacks.builder:musl --path
. --env BP_NATIVE_IMAGE=true --env BP_JVM_VERSION=21

You can check the size of the resulting image as follows:

docker image ls demo-native-app

To run the application, use the following Docker command:

docker run --rm -it demo-native-app

Building native image Chapter 5

9

6. Configuration options

The following table lists pack builder configuration options for BellSoft Liberica JDK Lite and Native
Image Kit Cloud Native Buildpacks ver. 1.1.0.

Variable Default value Description

Build configuration options

$BP_JVM_JLINK_ARGS • --no-man-pages

• --no-header-files

• --strip-debug

• --compress=1

Configures custom jlink
arguments (--output must
be omitted).

$BP_JVM_JLINK_ENABLED false Enables the jlink tool to
generate custom JRE.

$BP_JVM_TYPE JRE Specifies the JVM type - JDK
or JRE.

$BP_JVM_VERSION 17 Specifies a Java version.

Launch configuration options

$BPL_DEBUG_ENABLED false Enables Java remote
debugging support.

$BPL_DEBUG_PORT 8000 Specifies the remote
debugging port.

$BPL_DEBUG_SUSPEND false Specifies whether to suspend
execution until a debugger
has attached.

Configuration options Chapter 6

10

Variable Default value Description

$BPL_HEAP_DUMP_PATH N/A Specifies the path to write
heap dumps on error.

$BPL_JAVA_NMT_ENABLED true Enables Java Native Memory
Tracking (NMT).

$BPL_JAVA_NMT_LEVEL summary Configures the level of NMT,
summary or detail.

$BPL_JFR_ARGS N/A Configures custom Java Flight
Recording (JFR) arguments.

$BPL_JFR_ENABLED false Enables Java Flight Recorder
(JFR).

$BPL_JMX_ENABLED false Enables Java Management
Extensions (JMX).

$BPL_JMX_PORT 5000 Specifies the JMX port.

$BPL_JVM_HEAD_ROOM 0 Configures the headroom in
memory calculation.

$BPL_JVM_LOADED_CLASS_
COUNT

35% of classes Sets the number of loaded
classes in memory
calculation.

$BPL_JVM_THREAD_COUNT 250 Sets the number of threads in
memory calculation.

$JAVA_TOOL_OPTIONS N/A Specifies the JVM launch
flags.

Configuration options Chapter 6

11

Building Java applications
with Cloud Native
Buildpacks

Alpaquita Linux

	Alpaquita Linux: Building Java applications with Cloud Native Buildpacks
	Contents
	1. Introduction
	Cloud Native Buildpacks
	Liberica JDK Lite
	Liberica NIK

	2. Image flavors
	Choosing libc library

	3. Building a Java application with Alpaquita Linux
	4. Optimizing image with JLink
	5. Building native image
	6. Configuration options

