
Alpaquita Linux
Modifying images without rebuild

Alpaquita Linux
Revision 1.0
November 2024

Copyright © BellSoft Corporation 2018-2024.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com

Contents

1. Overview 4

2. Prerequisites 5

3. Building with JDK, running with JRE 7

4. Modifying images with buildah 8

5. Running native applications with base images 10

1. Overview

BellSoft maintains a number of Alpaquita container images. The full list of images is available in the
Alpaquita Linux Images: Getting Started Guide.

This document describes several ways of customizing the existing Alpaquita images for building and
running Java applications. As an example we use a Spring Boot application.

All the examples below are performed on a Linux system with Docker installed.

Overview Chapter 1

4

https://docs.bell-sw.com/alpaquita-linux/stream/how-to/images-getting-started-guide/

2. Prerequisites

Make sure your system complies with the following prerequisites before you proceed to the next
sections.

We will be using a Spring Boot web application in our examples. Go to the spring initializr page and
perform the following:

1. Specify the following values:

◦ Project: Gradle - Groovy

◦ Language: Java

◦ Spring Boot: 3.0.6

◦ Packaging: Jar

◦ Java: 17

◦ Leave all other fields with default values.

2. Click ADD DEPENDENCIES and select two dependencies:

◦ Spring Web

◦ GraalVM Native Support

3. Click GENERATE to create the .zip file.

4. If the created .zip file is not downloaded automatically after it was generated, download the
demo.zip.

We will be creating some files during the course of this article. We recommend keeping the files in one
place, separately from other parts of your file system. Create a separate directory, for example,
customizing-images and unpack demo.zip to the created directory. All the next steps are
performed inside the customizing-images directory.

Update the DemoApplication class in
demo/src/main/java/com/example/demo/DemoApplication.java to include the home method
serving request to the / path as follows:

package com.example.demo;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

Prerequisites Chapter 2

5

https://start.spring.io/

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@SpringBootApplication
public class DemoApplication {

 @RequestMapping("/")
 String home() {
 return "Hello from the web!";
 }
 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }

}

Prerequisites Chapter 2

6

3. Building with JDK, running with
JRE

The liberica-runtime-container repository contains Liberica JDK and JRE JVM images.

JDK provides all the tools for compiling Java applications. It also serves as a runtime environment for
applications requiring the full JDK JVM. JRE is designed for running compiled Java applications.

Each image comes in 2 types: regular and slim. The slim version does not include Alpaquita Linux
package management software (apk-tools) and has a single image layer. These features make the
slim image smaller, more secure (with a reduced attack surface), and a good candidate to be used as
the `final' image for your applications.

Our application does not require the full JDK to run. We only need JDK tools to compile it, but you can
use a JRE JVM to run it. Therefore, we can use the Docker multi-stage builds approach and build our
application with a JDK image and copy it to a JRE image. Perform the following steps:

1. Create a Dockerfile file with the following content:

Build our application with a JDK
FROM bellsoft/liberica-runtime-container:jdk-17-musl AS builder
WORKDIR /build
COPY demo .
RUN ./gradlew clean bootJar

But run it with a JRE
FROM bellsoft/liberica-runtime-container:jre-17-slim-musl
WORKDIR /app
COPY --from=builder /build/build/libs/*.jar application.jar
EXPOSE 8080/tcp
CMD ["java", "-jar", "application.jar"]

2. Build the image as follows:

docker build -t jdk-build-jre-run .

3. To verify the image, start a new container based on the newly created image.

docker run -rm -p 8080:8080 jdk-build-jre-run

4. After the container starts, open the http://127.0.0.1:8080 address in a web browser.

Building with JDK, running with JRE Chapter 3

7

https://hub.docker.com/r/bellsoft/liberica-runtime-container
https://docs.docker.com/build/building/multi-stage/
http://127.0.0.1:8080

4. Modifying images with buildah

In the previous steps we created an image with our application. Let’s assume that some time later we
decide that our application must work over HTTPS instead of HTTP as it does now. Should we change
the Java code and execute the build procedure again? Actually, no. Fortunately, Spring applications
have a feature called "externalized configuration". This feature helps us modify the behavior of the
application by setting some properties in a config file, which is not a part of the application code, and
making the application read this file.

To enable HTTPS for the application in the jdk-build-jre-run image, you only need to create a
derivative image with a config file, SSL certificates, and a modified CMD.

For our test purposes it is enough to use a "self-signed" certificate, that is, a certificate not signed by a
trusted certificate authority. Let’s create it with the openssl tool using the following command:

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out certificate.pem -sha256
-days 365 -nodes -subj '/CN=localhost'

certificate.pem contains the certificate, and key.pem contains its private key.

Now it is the time to create a new image with necessary customizations.

Besides Docker, there are other tools for working with images. Each has its pros and cons. In this article
we use buildah. Buildah supports Dockerfiles. Also, you can use it to iteratively modify the image by
calling buildah with certain arguments. This feature may help in situations when your image creation
logic is hard (or even impossible) to implement in a Dockerfile. You can describe the entire creation
procedure in a shell script or even in a program in another language. Follow the steps below.

1. Install buildah by following the official installation guide.

2. Buildah keeps container images separately from the Docker daemon. To get access to our jdk-
build-jre-run image, pull it from the local Docker daemon to the buildah storage location.

buildah pull docker-daemon:jdk-build-jre-run:latest

3. Create a working container from the image.

newcontainer=$(buildah from jdk-build-jre-run)

4. Mount its root file system.

export newcontainer
buildah unshare
mntpoint=$(buildah mount $newcontainer)

Modifying images with buildah Chapter 4

8

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/?ref=thomasvitale.com#howto.properties-and-configuration.externalize-configuration
https://buildah.io/
https://github.com/containers/buildah/blob/main/install.md

5. Now $mntpoint points to the root file system of our working container. For example,
$mntpoint/app contains our application.jar.

6. Copy certificate and key files to /app in the container.

cp certificate.pem key.pem $mntpoint/app/

7. Create $mntpoint/app/application.yaml configuration file for our application with the
following content:

server:
 ssl:
 certificate: "/app/certificate.pem"
 certificate-private-key: "/app/key.pem"

8. We do not need to modify the file system anymore, so let’s unmount it.

buildah umount $newcontainer
exit # to exit from buildah unshare session

9. Update the image CMD to make the application read the config from /app/application.yaml.

buildah config --cmd='["java", "-jar", "application.jar", "--
spring.config.location=/app/application.yaml"]' $newcontainer

10. Commit the working container as a new image - jdk-jre-run-with-ssl.

buildah commit $newcontainer jdk-jre-run-with-ssl

11. The new image is available only in the buildah storage. You can verify it by running the following
command:

buildah images

12. To make it available for docker commands, push it to the local Docker daemon.

buildah push localhost/jdk-jre-run-with-ssl:latest docker-daemon:jdk-jre-
run-with-ssl:latest

13. To verify that the new image is indeed works over HTTPS, start it with Docker.

 docker run -it --rm -p 8080:8080 jdk-jre-run-with-ssl

Once the image is running, open https://127.0.0.1:8080 in a browser. After accepting the certificate
warning, you can see the page generated by the application.

Modifying images with buildah Chapter 4

9

https://127.0.0.1:8080

5. Running native applications
with base images

Liberica Native Image Kit, one of BellSoft products, can transform a Java application to a standalone
execution binary. The binary version of the program does not require a JVM and has almost instant
startup time. Alpaquita Linux images with Liberica Native Image Kit are available in the liberica-native-
image-kit repository.

Even if you have an execution binary, you still need an image to run it in. Images in the alpaquita-linux-
base repository are small and do not include any unnecessary software as they provide Alpaquita
Linux images with the minimum amount of packages.

We can transform our application to an execution binary and run it with a base image. A Dockerfile
for this scenario may look like the following:

Build our application with Liberica Native Image Kit
FROM bellsoft/liberica-native-image-kit-container:jdk-17-nik-22-musl AS builder
WORKDIR /build
COPY demo .
RUN ./gradlew clean nativeCompile

Create a new image based on the base image and the binary
FROM bellsoft/alpaquita-linux-base:stream-musl
WORKDIR /app
COPY --from=builder /build/build/native/nativeCompile/demo .
EXPOSE 8080/tcp
RUN apk add --no-cache zlib && \
 apk del --no-cache apk-tools
CMD ["./demo"]

Binaries generated by Liberica Native Image Kit have a dependency on zlib shared libraries. Make sure
that this package is installed in the runtime environment.

apk add --no-cache zlib

The following optional command removes tools to add or delete packages in Alpaquita Linux:

apk del --no-cache apk-tools

You can remove the tools if you want to prevent accidental modification of packages installed in this or
any derivative image.

Running native applications with base images Chapter 5

10

https://bell-sw.com/liberica-native-image-kit/
https://hub.docker.com/r/bellsoft/liberica-native-image-kit-containe
https://hub.docker.com/r/bellsoft/liberica-native-image-kit-containe
https://hub.docker.com/r/bellsoft/alpaquita-linux-base
https://hub.docker.com/r/bellsoft/alpaquita-linux-base

Building and verification of the generated image is identical to the previous approach.

This document provides an overview of customizing Alpaquita containers for Java applications.
However, apart from Java, our repositories contain images for Python and C/C++ applications. The
approaches described in this document can be applied to them as well.

Running native applications with base images Chapter 5

11

https://hub.docker.com/r/bellsoft/alpaquita-linux-python
https://hub.docker.com/r/bellsoft/alpaquita-linux-gcc

Modifying images without
rebuild

Alpaquita Linux

	Alpaquita Linux: Modifying images without rebuild
	Contents
	1. Overview
	2. Prerequisites
	3. Building with JDK, running with JRE
	4. Modifying images with buildah
	5. Running native applications with base images

