
Alpaquita Linux
Using Ansible to deploy Java
applications

Alpaquita Linux
Revision 1.0
January 2024

Copyright © BellSoft Corporation 2018-2024.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com

Contents

1. Ansible overview 5

2. Prerequisites 7

3. Preparing an inventory 8

4. Building a Java application 9

5. Installing Java 10

6. Creating an application user 11

7. Deploying a Spring Boot application 12

8. Converting the application into a service 13

9. Handling application updates 14

10. Conclusion 16

1. Ansible overview

Ansible is a popular automation tool for managing IT systems.

This document demonstrates several Ansible features for deploying a Spring Boot Java application on
an Alpaquita Linux instance.

• A control node is a system on which Ansible is installed.

• Managed nodes are systems that Ansible controls.

Ansible initiates SSH connections from the control node to each managed node and executes
necessary configuration operations on the managed node. These operations may include file
modifications, starting or stopping services, adding users, and much more.

Configuration operations are written to YAML files called playbooks. Each playbook contains an
ordered list of plays. Each play contains an ordered list of tasks. Each task lists one or more Ansible
modules that define what operations should be performed.

Modules are grouped into collections, and Ansible ships with a large number of collections and
modules to cover many scenarios.

In addition to regular tasks, Ansible also provides handlers, that is tasks, which are executed only when
notified.

In comparison to scripting, Ansible is essentially a state engine, and all its tasks are idempotent, so
playbooks are written with a declarative approach.

For example, you can see a playbook with two plays below. Each contains only one task. The first one
uses the ansible.builtin.ping module to ping systems in the java_servers group. The second
one uses the ansible.builting.user module to declare that all systems in the same group should
have a user with the name user and the comment A user.

- name: First play
 hosts: java_servers
 tasks:
 - name: Ping
 ansible.builtin.ping:
- name: Second play
 hosts: java_servers
 tasks:
 - name: Add a user
 ansible.builtin.user:
 name: user

Ansible overview Chapter 1

5

https://www.ansible.com/
https://docs.ansible.com/ansible/latest/collections/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html#term-Idempotency

 comment: A user

Ansible changes the configuration of the managed node only if the user does not exist or its
parameters are different from those set in the playbook, that is when the actual state of the node
differs from the declared state in the playbook.

Ansible overview Chapter 1

6

2. Prerequisites

Perform the following steps before you proceed to the next sections.

Set up two hosts: one is a control node and the other is a managed node.

Install Ansible on a control node that can be any UNIX-like system with Python 3.9 or newer installed.

On Fedora, you can install Ansible as follows:

sudo dnf install ansible

On Ubuntu, use the following command:

sudo apt-get install ansible

For other types of systems, refer to their documentation and the official Ansible installation guide.

For the other host, the managed node, we need an Alpaquita Linux instance. It can be any type of
instances, such as bare-metal, virtual machine or an instance in a cloud as long as the following
requirements are met:

• A user with admin privileges is created;

• SSH access is set up from the control node to this instance using admin user credentials;

• A Python interpreter is installed.

Visit the Alpaquita download page and choose the appropriate version of Alpaquita.

In our example, the Alpaquita instance is a virtual machine deployed from an iso. During installation,
we assigned the 192.168.71.100 ip to it. The user with admin privileges is admin. A Python
interpreter was installed by connecting to the instance via SSH as admin and executing the following
command:

sudo apk add python3

You will be creating some files during the course of this document. We recommend keeping the files in
one place. Create a separate directory on the control node, for example: alpaquita-ansible. All the
next steps are performed on the control node inside this directory.

Prerequisites Chapter 2

7

https://docs.ansible.com/ansible/latest/installation_guide/
https://bell-sw.com/pages/downloads/alpaquita/

3. Preparing an inventory

The number of managed nodes can be quite large, and specifying them all in the command line is
cumbersome. Ansible provides an inventory file that contains logically organized sets of nodes.

Let’s create an inventory file named inventory with the following content:

[alpaquita_nodes]
alpaquita-node ansible_host=192.168.71.100 ansible_user=admin

[alpaquita_nodes:vars]
ansible_python_interpreter=/usr/bin/python3

In this file we declare a group of nodes named alpaquita_nodes that contains a single node with the
alpaquita-node id with information regarding its network address and the name of the user.

Section [alpaquita_nodes:vars] specifies variables for all members of the corresponding group.

Substitute the address and username with your values.

Now, after we have created an inventory, we can verify that Ansible connects to our Alpaquita
instance by pinging all nodes in the alpaquita_nodes group.

ansible -i inventory -k -b -K -m ping alpaquita_nodes

• -k instructs Ansible to ask for an SSH password;

• -b option tells Ansible that the user we are connecting as is not root, and in order to gain admin
privileges it should use sudo on the managed node, and the -K option makes Ansible ask for the
sudo password.

Preparing an inventory Chapter 3

8

4. Building a Java application

In this document we utilize the Spring PetClinic Sample Application Java application.

Build it on any machine with JDK Java 17 or later as follows:

git clone https://github.com/spring-projects/spring-petclinic.git
cd spring-petclinic
./mvnw package

After the application is ready, save the generated target/*.jar file as spring-petclinic.jar in
the alpaquita-ansible directory on the control node.

Building a Java application Chapter 4

9

https://github.com/spring-projects/spring-petclinic

5. Installing Java

To make Java applications work on our Alpaquita instance, install a JRE.

Alpaquita repositories provide Liberica JRE, to install it create a playbook file named playbook.yaml
with a single task.

- name: Alpaquita setup
 hosts: alpaquita_nodes
 tasks:
 - name: Install Liberica JRE
 community.general.apk:
 name: liberica17-lite-jre-no-deps

In Alpaquita, packages are managed by APK, so you can use the community.general.apk Ansible
module for package installation.

Execute the playbook playbook.yaml with the following command:

ansible-playbook -b -k -K -i inventory playbook.yaml

This command is the common command that we will use to execute the playbook later in this
document.

Installing Java Chapter 5

10

https://bell-sw.com/libericajdk/
https://packages.bell-sw.com/alpaquita/docs/stream/alpaquita-apk-guide.pdf

6. Creating an application user

PetClinic is a web application. Running web applications under a user with admin privileges can lead
to security issues, therefore we will create a special user and substitute our existing admin user with
the newly created one.

Add the following tasks to playbook.yaml to create a new user:

- name: Install shadow package
 community.general.apk:
 name: shadow
- name: Add petclinic group
 ansible.builtin.group:
 name: petclinic
- name: Add petclinic user
 ansible.builtin.user:
 name: petclinic
 group: petclinic
 comment: PetClinic
 home: /home/petclinic
 create_home: true
 shell: /sbin/nologin
 password: !

We install the shadow package, because it provides groupadd and useradd utilities that are not
present in the default Alpaquita installation.

Setting the shell to /sbin/nologin and password to ! prohibits interactive login as the petclinic
user.

Apply the configuration by executing the playbook. The petclinic user and group should be created
in the system.

Creating an application user Chapter 6

11

7. Deploying a Spring Boot
application

Add the following task to the playbook to copy the application’s jar to the Alpaquita system:

- name: Copy jar
 ansible.builtin.copy:
 src: spring-petclinic.jar
 dest: /home/petclinic
 owner: petclinic
 group: petclinic
 mode: 0444

After that, execute the playbook.

Now we can manually start the application. Login to the Alpaquita system as the admin user and
execute the following command:

sudo -u petclinic java -jar /home/petclinic/spring-petclinic.jar

Now open the http://192.168.71.100:8080 URL in a web browser to see that the application is actually
running.

Stop the spring-petclinic.jar application before proceeding to the next section.

Deploying a Spring Boot application Chapter 7

12

http://192.168.71.100:8080

8. Converting the application into
a service

Starting applications as described in the previous section can be useful sometimes, but you can
automate such routine operations. Convert the manual startup operations into a service and let a
service manager be responsible for starting and stopping our applications when needed.

Alpaquita uses OpenRC to manage services. Services are defined in shell script files.

See the OpenRC documentation and Alpaquita Linux: Setting up OpenRC init system for additional
information on OpenRC services.

In this case, we create a definition of a new service in spring-petclinic-service.sh file.

#!/usr/sbin/openrc-run

name="PetClinic service"
command="/usr/bin/java"
command_args="-jar /home/petclinic/spring-petclinic.jar"
command_background=true
pidfile="/run/$RC_SVCNAME.pid"
command_user="petclinic:petclinic"

Update the playbook and add tasks for copying the service file to the correct location and ensuring that
the new service is running and automatically starts on system boot.

- name: Copy the service file
 ansible.builtin.copy:
 src: spring-petclinic-service.sh
 dest: /etc/init.d/petclinic
 owner: root
 group: root
 mode: 0755
- name: Enable petclinic service
 ansible.builtin.service:
 name: petclinic
 enabled: true
 state: started

After executing the playbook, open http://192.168.71.100:8080 in a browser to see that the application
is running. If you reboot the Alpaquita instance, the application starts automatically.

Converting the application into a service Chapter 8

13

https://github.com/OpenRC/openrc/blob/master/service-script-guide.md
https://download.bell-sw.com/documentation/alpaquita-linux/openrc-for-systemd-adepts-alpaquita-linux.pdf
http://192.168.71.100:8080

9. Handling application updates

If you update spring-petclinic.jar with a new version and execute the playbook, the Copy jar
task updates the configuration of the system by copying a new version of the file. However, the
petclinic service is not restarted and runs the previous version of the application.

To update the .jar file, we introduce a new handler to restart the service and make the Copy jar
task notify this handler after it has updated system configuration.

The updated playbook should look like the following (with irrelevant parts omitted):

- name: Alpaquita setup
 hosts: alpaquita_nodes
 tasks:
 <...>
 - name: Copy jar
 ansible.builtin.copy:
 src: spring-petclinic.jar
 dest: /home/petclinic
 <...>
 notify:
 - Restart petclinic service
 <...>
 handlers:
 - name: Restart petclinic service
 ansible.builtin.service:
 name: petclinic
 state: restarted

To verify the update procedure, go to the directory with PetClinic sources, update the image of pets
displayed on the application welcome page with a new picture, and build a new jar file.

curl
https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstrat
ion_1.png \
 -o ./src/main/resources/static/resources/images/pets.png
git add src/main/resources/static/resources/images/pets.png
git commit -m 'Updated pets.png'
rm -rf target
./mvnw package

Copy the generated jar file to spring-petclinic.jar and execute the playbook. Ansible notifies that

Handling application updates Chapter 9

14

it is copying the new file and restarting the service. Refreshing the page in the browser also shows the
new image (depending on your browser, it may be necessary to perform the "force refresh" of the
page).

Handling application updates Chapter 9

15

10. Conclusion

This document only briefly describes a few Ansible features, but it can help you set up a system for
some simple use cases.

If there is a requirement to have a system with an identical configuration, all you need to do is set up a
new system and add a new line with access information to inventory.

You can go further and also perform provisioning of new systems with Ansible. For example, the
Ansible ships AWS, Azure and, GCP modules to work with cloud resources, therefore you can make
Ansible create your virtual machines in the cloud and configure them the way you need.

For more information, refer to the official Ansible documentation.

Conclusion Chapter 10

16

https://docs.ansible.com/ansible/latest/collections/amazon/aws/
https://docs.ansible.com/ansible/latest/collections/azure/azcollection/
https://docs.ansible.com/ansible/latest/collections/google/cloud/
https://docs.ansible.com/community.html

Using Ansible to deploy
Java applications

Alpaquita Linux

	Alpaquita Linux: Using Ansible to deploy Java applications
	Contents
	1. Ansible overview
	2. Prerequisites
	3. Preparing an inventory
	4. Building a Java application
	5. Installing Java
	6. Creating an application user
	7. Deploying a Spring Boot application
	8. Converting the application into a service
	9. Handling application updates
	10. Conclusion

