
Alpaquita Linux: Debugging apps
running in Docker with JetBrains
and VSCode
Java, C, and Python

Alpaquita Linux
Revision 1.0
December 2024

Copyright © BellSoft Corporation 2018-2024.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com

Contents

1. Overview 6

2. Java 7

Prerequisites 7

Dockerizing the PetClinic application 7

Application overview 7

Clone the PetClinic application from GitHub 7

Dockerfile 8

Building the petclinic-liberica image 9

Creating a debugging image 10

Overview 10

Edit Dockerfile.debug 11

Build and run debugging image 11

Remote debugging using IntelliJ IDEA 11

Configure remote debugging 12

3. Python 20

Prerequisites 20

Dockerizing a FastAPI application 20

Application: quadratic equation solver 21

main.py 21

Dockerfile 22

requirements.txt 22

Building a debugging image 23

Dockerfile.debug 23

Configuring VSCode for remote debugging 24

Install extensions 24

Create launch.json 25

Start debugging 27

4. C/C++ 29

Prerequisites 29

Dockerizing a C application 29

Application: String reverser 29

main.c 30

Makefile 30

Dockerfile 31

Modified main.c 31

Creating a debugging image 32

Updated Makefile 33

Dockerfile.debug 33

Building the image and running the container 34

Configuring CLion for remote debugging 35

1. Overview

If you have a setup to deploy your application using containers, debugging your application by
connecting to debugging server that is running in your development docker container has the following
advantages:

• Environment consistency: minimize environment-related bugs.

• Isolation of dependencies: less clutter in your local machine, avoid version conflicts.

• Easy cleanup and reset: restart, delete or stop your container as necessary.

The goal of this guide is to display how to remotely debug an application written in Java, Python, or C
running inside a docker container. We will use CLion, IntelliJ IDEA, and VSCode to demonstrate this.
We do not cover PyCharm in the guide, because at the time of writing, the remote debugging feature is
limited to the paid version of their software.

Each section includes a sample application for those without an existing project who still want to
follow along.

Although this document covers remote debugging with three popular languages using three IDEs, the
key patterns in remote debugging are the same for any environment:

1. Find out whether your IDE can connect to a debugging server.

2. Learn which debugging tool your IDE uses. For example, PyCharm uses pydevd-pycharm and
VSCode uses debugpy for Python by default.

3. Adjust or create a Docker image that exposes the debugging server over a network.

4. Configure your IDE to use the debugging server exposed by a Docker container for debugging.

After studying the examples in this guide, you should be able to adapt them to your own needs. For
example, you can use delve debugger to debug Go applications using GoLand. And as an alternative
to IntelliJ IDEA, use Eclipse for Java debugging and so forth.

The next parts demonstrate how to use popular IDEs to debug applications written in Java, Python, or
C.

Overview Chapter 1

6

2. Java

We will use a sample Spring application, Spring PetClinic, to explain how to remotely debug Java
docker applications. Spring PetClinic was dockerized using Liberica as a base image.

We will also use IntelliJ IDEA, as it is popular among Java developers.

Prerequisites

• Docker installed and running

• Installed IntelliJ IDEA

Dockerizing the PetClinic application

Note:

If you already have a containerized Java application, you can skip this step and
replace the petclinic-liberica with your application image name.

Application overview

Spring PetClinic is a CRUD application that uses technologies such as Spring Boot, Thymeleaf,
Bootstrap, in-memory database H2.

Overall, it is a well-known and suitable application for use as an example.

Clone the PetClinic application from GitHub

Use the following command to clone the sample application.

Java Chapter 2

7

https://github.com/spring-projects/spring-petclinic
https://bell-sw.com/libericajdk/
https://www.jetbrains.com/idea/

$ git clone https://github.com/spring-projects/spring-petclinic.git

Dockerfile

Place the contents of the Dockerfile below into a file Dockerfile inside the spring-petclinic
directory we have just cloned.

Create a stage for resolving and downloading dependencies.
FROM bellsoft/liberica-openjdk-alpine:21 AS deps

Download dependencies as a separate step to take advantage of Docker's
caching.
WORKDIR /build

COPY --chmod=0755 mvnw mvnw
COPY .mvn/ .mvn/

RUN --mount=type=bind,source=pom.xml,target=pom.xml \
 --mount=type=cache,target=/root/.m2 \
 ./mvnw dependency:go-offline -DskipTests

Create a stage for building the application based on the stage with
downloaded dependencies.
FROM deps AS package

WORKDIR /build
COPY ./src src/
RUN --mount=type=bind,source=pom.xml,target=pom.xml \
 --mount=type=cache,target=/root/.m2 \
 ./mvnw package -DskipTests && \
 mv target/$(./mvnw help:evaluate -Dexpression=project.artifactId \
 -q -DforceStdout)-$(./mvnw help:evaluate -Dexpression=project.version \
 -q -DforceStdout).jar \
 target/app.jar

Create a stage for extracting the application into separate layers.
FROM package AS extract

WORKDIR /build

RUN java -Djarmode=layertools -jar target/app.jar \

Java Chapter 2

8

 extract --destination target/extracted

Create a new stage for running the application that contains the minimal
runtime dependencies. We use liberica-openjre-alpine:21
because there is no need to use a full blown JDK just to run the app.
FROM bellsoft/liberica-openjre-alpine:21 AS final

Create a non-privileged user that the app will run under.
ARG UID=10001
RUN adduser \
 --disabled-password \
 --gecos "" \
 --home "/nonexistent" \
 --shell "/sbin/nologin" \
 --no-create-home \
 --uid "${UID}" \
 appuser
USER appuser

Copy the executable from the "package" stage.
COPY --from=extract build/target/extracted/dependencies/ ./
COPY --from=extract build/target/extracted/spring-boot-loader/ ./
COPY --from=extract build/target/extracted/snapshot-dependencies/ ./
COPY --from=extract build/target/extracted/application/ ./

Expose 8080, as we will use this as the application port.
EXPOSE 8080

Specifying the command that will executed when the container starts.
ENTRYPOINT ["java", "org.springframework.boot.loader.launch.JarLauncher"]

Building the petclinic-liberica image

Use the following commands to build the petclinic-liberica image.

$ cd spring-petclinic
$ docker build --tag petclinic-liberica .

In this section we have created the example production image that we want to debug.

Java Chapter 2

9

Creating a debugging image

Overview

To debug the PetClinic application, we use Java Debug Wire Protocol (JDWP), which is the protocol
used for communication between a debugger (the IDE) and the Java virtual machine (the PetClinic
app). It helps to perform debugging tasks such as setting breakpoints, stepping through code, and
inspecting variables in IntelliJ IDEA.

Liberica and many other docker java images come with JDWP; therefore, you do not need to install
other tools. We will instruct JVM to use JDWP using the command line arguments.

JAVA_TOOL_OPTIONS environment variable can be used to specify command line options for java
launcher. The content of the JAVA_TOOL_OPTIONS environment variable is a list of arguments
separated by space.

We can append a command line option required to start java debugging server to
JAVA_TOOL_OPTIONS.

The option needed by java launcher is the following:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005

Tip

If you want to use a port other than 5005 for debugging server, change
adress=5005 to address=<your_port>.

Tip

Change suspend=n to suspend=y if you want the app to be suspended immediately
before the main class is loaded. The app will wait until you connect to the java
debugging server.

Java Chapter 2

10

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/introclientissues005.html
https://docs.oracle.com/en/java/javase/21/docs/specs/jvmti.html#tooloptions

Edit Dockerfile.debug

Copy the contents of the Dockerfile above into a file Dockerfile.debug in the spring-petclinic
directory.

Important:

This section assumes you are using java launcher for starting your app. If you use
another method to run your application inside a container, the approach described
here may not work. In that case, look for an alternative way to add jdwp capabilities
to your launcher.

Change this to your production image
FROM petclinic-liberica

Add command line option for enabling JDWP debugging server
ENV JAVA_TOOL_OPTIONS="${JAVA_TOOL_OPTIONS} \
 -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005"

Build and run debugging image

Use the following commands to build the debugging image. Remember to expose the port that was
specified, in this case 5005, defined in the JAVA_TOOL_OPTIONS environment variable.

$ docker build --tag petclinic-liberica-debug -f Dockerfile.debug .
$ docker run -p8080:8080 -p5005:5005 petclinic-liberica-debug
Picked up JAVA_TOOL_OPTIONS:
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=*:5005
Listening for transport dt_socket at address: 5005
...

As stated in the output, the application is listening for a debugging session on port 5005.

Remote debugging using IntelliJ IDEA

Before proceeding, ensure the debugging container is running and the Java debugging server is set up,
waiting at port 5005.

Java Chapter 2

11

Configure remote debugging

1. Open the previously cloned spring-petclinic directory using IntelliJ IDEA by clicking File > Open
and then selecting the path to spring-petclinic directory. Click OK.

2. Click Open as Maven project and click Trust Project. You should be now in the spring-
petclinic project.

3. From the main menu, select Run > Edit Configurations.

Java Chapter 2

12

4. Click "+" (plus) on the top left to add a new configuration and select Remote JVM Debug.

Java Chapter 2

13

You can give this configuration a meaningful name, such as "Docker Pet Clinic Debugging".

Java Chapter 2

14

Note that the default values for Host and Port are localhost and 5005 respectively. Update
these to match the host address and port configured in the previous steps if you changed the
values.

5. Click OK to save the configuration.

To ensure debugging is working as expected, let’s insert a breakpoint at the processCreationForm
method of the OwnerController class.

Let’s try to debug the application using the configuration we have created.

From the main menu, click Run > Debug 'Docker Pet Clinic Debugging'(or select the name assigned to
the debug configuration earlier).

Java Chapter 2

15

You should see a message in the debugging console that you are connected to localhost:5005 or
your specified port over the network.

processCreationForm method is responsible for handling POST requests to the endpoint
/owners/new. It manages the creation of a new Owner entity, validates the form input, and redirects

Java Chapter 2

16

users based on the result of the validation.

Let’s try to debug that method.

1. In your browser, go to http://localhost:8080 and click Add Owner on the Find Owners section.

2. Fill the form and click Add Owner.

Java Chapter 2

17

http://localhost:8080

Now the web page waits, because we have instructed the debugger to stop at the
processCreationForm method in the OwnerController class.

We can see that the method first instantiates an owner object with the data we provided and then
saves it to the owners which is a Spring Repository.

We can step through the code, set other breakpoints, evaluate expressions, and more.

Note:

See the debugging section of Intellij IDEA Documentation to get more information
about debugging in IntelliJ IDEA.

3. Click Continue to let the application continue normally.

Java Chapter 2

18

https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://www.jetbrains.com/help/idea/debugging-code.html

Now we see that the application continues and finishes the POST request normally. Every time the
application runs the code we marked with a breakpoint, it stops and waits for an input in IntelliJ
IDEA, so we can debug it further.

Java Chapter 2

19

3. Python

Prerequisites

• Docker installed and running

• Working VSCode with a Python extension installed

We will debug the FastAPI application running on uvicorn web server. It should be easy to adjust the
setup to other web frameworks like Flask or Django.

We use debugpy module since it is provided by Python Debugger extension and bundled with the
Python extension from VSCode marketplace.

Dockerizing a FastAPI application

Note:

Skip this section if you already have a python image of your application and replace
the base image in Dockerfile.debug with your application image name.

The final structure of the sample project should look like the following:

$ tree
.
├── Dockerfile
├── Dockerfile.debug
├── requirements.txt
└── src
 └── main.py

2 directories, 4 files

Python Chapter 3

20

https://fastapi.tiangolo.com/
https://www.uvicorn.org/
https://marketplace.visualstudio.com/items?itemName=ms-python.debugpy
https://marketplace.visualstudio.com/items?itemName=ms-python.python

Application: quadratic equation solver

We have a simple application that returns the roots of the following quadratic equation ax^2 + bx +
c = 0.

$ curl -s \
 --request GET \
 --url 'http://localhost:8000/solve_quadratic?a=1&b=-8&c=15' \
 | jq

{
 "x1": 5.0,
 "x2": 3.0
}

main.py

Create a directory src and copy the contents of the following python code into main.py in the src
directory.

Note:

We have introduced a not-so-subtle bug in the logic where we calculate x1 and x2.
We should be dividing by (2 * a) instead of (2 * c).

from fastapi import FastAPI, HTTPException
from math import sqrt
from typing import Dict

app = FastAPI()

@app.get("/solve_quadratic")
def solve_quadratic(a: float, b: float = 0, c: float = 0) -> Dict[str, float]:
 if a == 0:
 raise HTTPException(status_code=400,
 detail="Coefficient 'a' cannot be zero.")

 discriminant = b**2 - 4*a*c

 if discriminant < 0:

Python Chapter 3

21

 raise HTTPException(status_code=400,
 detail="No real solutions, discriminant is negative.")

 # Bug introduced here: it should be (2 * a)
 x1 = (-b + sqrt(discriminant)) / (2 * c)
 x2 = (-b - sqrt(discriminant)) / (2 * c)

 if x1 == x2:
 return {"x": x1}

 return {"x1": x1, "x2": x2}

Dockerfile

Create a file Dockerfile with following contents.

FROM bellsoft/alpaquita-linux-python:3.12-musl

Print log messages immediately instead of them being buffered
ENV PYTHONUNBUFFERED=1

WORKDIR /src

Activate virtual environment
ENV VIRTUAL_ENV=/src/.venv
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN python3 -m venv $VIRTUAL_ENV

Install dependencies:
COPY requirements.txt .
RUN pip3 install -r requirements.txt

Copy source code
COPY src/ .

Start the uvicorn web server. 8000 is the default port
CMD ["python", "-m", "uvicorn", "main:app", "--host", "0.0.0.0"]

requirements.txt

Put the following content into a file requirements.txt

Python Chapter 3

22

fastapi
uvicorn

Build your image with the following command.

$ docker build --tag fastapi-app .

Building a debugging image

It is important that both local dev environment, where we debug the python code, and the container,
where the application is running, have the debugpy module available.

We will install it in the debugging image and also instruct docker to run debugpy as a default
command when the container starts.

Dockerfile.debug

1. Copy the contents of the following Dockerfile into a file Dockerfile.debug.

Note:

We used the default port 5678 for debugpy debugging server port. You can use
any available port.

Base image
FROM fastapi-app

WORKDIR /src

Install debugpy for vscode remote debugging
RUN pip3 install debugpy

Append debugpy to the uvicorn command so it will be executed in a
debugging
mode
CMD ["python", "-m", "debugpy", "--listen", "0.0.0.0:5678", \
 "-m", "uvicorn", "main:app", "--host", "0.0.0.0"]

2. Build the debugging image with the following command.

Python Chapter 3

23

$ docker build --tag fastapi-app-debug -f Dockerfile.debug .

3. Finally, run the debugging image.

$ docker run --rm -p8000:8000 -p5678:5678 fastapi-app-debug

Configuring VSCode for remote debugging

VSCode uses debugpy python module for debugging remotely. We will install Python Debugger for
accessing the debugpy module.

Also, launch.json configuration file inside the .vscode directory dictates the behavior of the
debugger in VSCode. We will be using this file to connect to debugging session in the container.

Before continuing, make sure your debugging docker application is running.

1. Let’s open the source code directory of the FastAPI project.

2. Select the path for the parent directory of main.py from the previous steps. Click Yes, I trust the
authors.

Install extensions

From activity bar, select extensions, and search for ms-python.debugpy. Click Install.

Python Chapter 3

24

Create launch.json

1. launch.json is necessary for configuring the debugger of VSCode. From activity bar, select Run
and Debug. Click create a launch.json file.

2. Select Python Debugger and select Remote Attach.

Python Chapter 3

25

3. VSCode asks for an IP address of the debugging server. Keep the default option localhost.

4. Either keep the default port number 5678 or change to your port in case you have used a different
port.

5. Verify that VSCode created a launch.json file and looks similar to this:

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Python Debugger: Remote Attach",
 "type": "debugpy",
 "request": "attach",
 "connect": {
 "host": "localhost",
 "port": 5678
 },
 "pathMappings": [

Python Chapter 3

26

 {
 "localRoot": "${workspaceFolder}",
 "remoteRoot": "."
 }
]
 }
]
}

Start debugging

1. Create some breakpoints in the application.

2. Click Run > Start Debugging.

You should now see a Debug toolbar at the top center.

3. From the terminal, send a get request to the FastAPI application as follows.

$ curl -s \

Python Chapter 3

27

 --request GET \
 --url 'http://localhost:8000/solve_quadratic?a=1&b=-8&c=15' \
 | jq

You should see that the command "hangs". This is because we have set breakpoints in the
main.py file and application freezes the execution for us at the breakpoints.

4. Go to Run and Debug from the activity bar. Observe that we have received the parameters of the
request: a, b and c in the variables section.

5. Click Continue from the Debug toolbar to jump to the next breakpoint. Click Step over to execute
one line of code. We now see the value of discriminant from the variables section.

6. Step over until you reach the x2 = …. We see that x1 and x2 are calculated incorrectly.

You may debug further or stop the debugging session by pressing the red square on the debug toolbar.

This concludes the guide for remote debugging in Python.

For more information about debugging in VSCode, visit the documentation section on the Visual Studio
Code website.

Python Chapter 3

28

https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/debugging

4. C/C++

As an example in this part of the guide, we will use an application that returns a reversed version of
the string received from the standard input. The application will be running inside an Alpaquita docker
container. Then we will introduce a bug in the application and attempt to debug it remotely in CLion.

We will use gdbserver, which is a lightweight debugging server for gdb.

Prerequisites

• Docker installed and running

• Installed CLion

Dockerizing a C application

Upon completion of this section, you should have the following directory structure:

$ tree
.
├── Dockerfile
├── Makefile
└── src
 └── main.c

Application: String reverser

We have a simple application that takes a string of characters from standard input, reverses it, and
finally, prints the reversed string to the standard output.

Let’s provide the input "noel sees leon" to the program.

$ docker run -it reverser:latest
noel sees leon
Reversed string:
noel sees leon

C/C++ Chapter 4

29

https://www.jetbrains.com/clion/
https://sourceware.org/gdb/

main.c

#include <string.h>
#include <stdio.h>

/* reverse: reverse string s in place */
void reverse(char s[]) {
 int n = strlen(s);

 for (int i = 0,j = n - 1; i < j; i++, j--) {
 char tmp = s[i];
 s[i] = s[j];
 s[j] = tmp;
 }
}

/* main: get string from stdin, reverse and print it */
int main() {
 char str[256];
 fgets(str, sizeof(str), stdin);

 reverse(str);
 printf("Reversed string: %s\n", str);
}

Makefile

CC = gcc
SRC_DIR = src
BUILD_DIR := build
CFLAGS = -Wall -Wextra -O2

BIN = reverser

main: $(BUILD_DIR)/$(BIN)

$(BUILD_DIR)/$(BIN): $(SRC_DIR)/main.c
 @mkdir -p $(BUILD_DIR)
 $(CC) $(CFLAGS) -o $@ $<

C/C++ Chapter 4

30

clean:
 rm -rf $(BUILD_DIR)

.PHONY: main clean

Dockerfile

The following Dockerfile has two stages. The First stage is for compiling the code. The second stage is
only for executing the binary, hence it is lightweight.

FROM bellsoft/alpaquita-linux-gcc:14.2-musl AS build
WORKDIR /build
Copy src and Makefile
COPY src src
COPY Makefile .
Compile the app
RUN make

Use a lightweight base for final image
FROM bellsoft/alpaquita-linux-base:stream-musl
WORKDIR /app
Follow best practices and use a non-root user
RUN adduser -D user
USER user
Copy the binary
COPY --from=build /build/build/reverser .
Execute the binary
ENTRYPOINT ["./reverser"]

Modified main.c

The main.c above works fine. Let’s say we want to take the input from arguments, not from the
standard input. While doing so, we will introduce a bug in the new main.c.

#include <string.h>
#include <stdio.h>

/* reverse: reverse string s in place */
void reverse(char s[]) {
 int n = strlen(s);

C/C++ Chapter 4

31

 for (int i = 0,j = n - 1; i < j; i++, j--) {
 char tmp = s[i];
 s[i] = s[j];
 s[j] = tmp;
 }
}

/* reverse: print reversed string from args */
int main(const int argc, char *argv[]) {
 /* We accept only one argument.If we receive more or less than one
 argument, exit with error */
 if (argc != 1) {
 fprintf(stderr, "Usage: ./reverser <string>\n");
 return 1;
 }

 // If we receive a too long string, exit
 if (strlen(argv[1]) > 256) {
 fprintf(stderr, "%s", "String too long\n");
 return 1;
 }
 // Copy the argument into a string
 char str[256];
 strncpy(str, argv[1], sizeof(str) - 1);

 reverse(str);
 printf("Reversed string: %s\n", str);
}

The modified code prints out the "wrong usage" error:

$ docker build --tag reverser-arg .
[+] Building 0.8s (15/15) FINISHED
...
$ docker run --rm -it reverser-arg:latest "noel sees leon"
Usage: ./reverser <string>

Next, we will create a Dockerfile for debugging this image.

Creating a debugging image

C/C++ Chapter 4

32

Updated Makefile

For debugging the binary, compile the code with the -g and -O0 flags. Flag -g adds debugging
information to the binary. Flag -O0 disables the optimization, which can rearrange, inline, or remove
code, in turn, might make debugging difficult.

Make the following adjustments to accept variable DEBUG in Makefile, which is 0 by default. If you
invoke make with DEBUG=1, it will adjust the CFLAGS by adding debugging flag -g and disabling
optimization with -O0. Also, it changes the build directory and binary names.

CC = gcc
CFLAGS = -Wall -Wextra
SRC_DIR = src
BUILD_DIR = build
BIN = reverser

DEBUG ?= 0
ifeq ($(DEBUG), 1)
 CFLAGS := $(CFLAGS) -g -O0
 BUILD_DIR := $(BUILD_DIR)-debug
 BIN := $(BIN).debug
else
 CFLAGS := $(CFLAGS) -O3
endif

main: $(BUILD_DIR)/$(BIN)

$(BUILD_DIR)/$(BIN): $(SRC_DIR)/main.c
 @mkdir -p $(BUILD_DIR)
 $(CC) $(CFLAGS) -o $@ $<

clean:
 rm -rf $(BUILD_DIR)

.PHONY: main clean

Dockerfile.debug

Change the make command to make DEBUG=1, install gdb and start gdbserver.

C/C++ Chapter 4

33

Note:

We used port 2159 for gdbserver, which is the registered TCP port number for
"GDB Remote Debug Port". You can use any available port.

Create a file Dockerfile.debug with the following content:

FROM bellsoft/alpaquita-linux-gcc:14.2-musl AS build

WORKDIR /build
COPY Makefile .
COPY src src
compile the code with debugging symbols
RUN make DEBUG=1

FROM bellsoft/alpaquita-linux-base:stream-musl
WORKDIR /app
Install gdb package
RUN apk update && apk add --no-cache gdb
COPY --from=build /build/build-debug/reverser.debug .
COPY --from=build /build/src src
Start gdbserver on port 2159 to debug the application
ENTRYPOINT ["gdbserver", ":2159","./reverser.debug"]

Tip

To minimize disk usage, you can remove the binaries and files provided by the gdb
package and leave only the gdbserver binary. Note that gdbserver requires the
libstdc++ library.

Building the image and running the container

Build the debugging image tagged as reverser-arg-debug.

To use gdb for tracing, the process group of the tracee must allow ptrace operations. By default,
Docker removes the SYS_PTRACE capability, which restricts ptrace use inside the container. This
capability needs to be re-enabled.

C/C++ Chapter 4

34

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=2159

Additionally, Docker’s default seccomp profile blocks several system calls essential for gdb, including
ptrace, perf_event_open, and process_vm_writev. Using --security-opt
seccomp=unconfined will bypass seccomp filtering for all processes in the container.

Then, run the gdbserver with the options explained above passing the string, "noel sees leon" as the
first argument to the program.

$ docker build --tag reverser-arg-debug -f Dockerfile.debug .

$ docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
 -p2159:2159 reverser-arg-debug:latest "noel sees leon"

Process ./reverser.debug created; pid = 9
Listening on port 2159

The gdb server is now waiting on port 2159. The next section explains how to connect to the gdb
server using CLion.

Configuring CLion for remote debugging

Important:

Before continuing, make sure that gdbserver is running inside a docker container.

1. First, open the project directory.

C/C++ Chapter 4

35

2. Click Trust Project.

Note:

Ignore the "No compilation commands found" error in the Build sidebar, since we
will be building our project inside a docker image anyway.

3. On the main menu, select Run > Edit Configurations.

C/C++ Chapter 4

36

4. Click the + icon and then select Remote Debug.

C/C++ Chapter 4

37

5. Fill the 'target remote' args with IP address and the port of the gdbserver, in this case localhost
and 2159. You may want to give this configuration a meaningful name like "Docker Remote
Debugging". Click OK.

C/C++ Chapter 4

38

6. On the side menu, open main.c. Set breakpoints in the main and reverse functions as in the
following image:

7. On the toolbar (top right), click the green bug icon to connect to gdbserver on port 2159, as we
configured earlier.

C/C++ Chapter 4

39

The program stops at line 20 in the main function, and you can see an argument count (argc) of 2.
The value of argv[0] is "./reverser.debug".

We undoubtedly passed the string "noel sees leon" to the program as an argument in the previous
steps. Let’s look at the value of argv[1].

8. On the debugging toolbar (bottom part of the interface), select Threads & Variables. At the top of
the window, enter the value you want to evaluate, in this case, argv[1]. Press Enter.

C/C++ Chapter 4

40

The "noel sees leon" string is displayed in the window.

The first argument of the program is always the program itself, "./reverser.debug". That’s why the
conditional if (argc != 1) fails, since we provide an argument to the program, argc should be
2, not 1.

9. Stop the debugging session by pressing red square on the toolbar.

Now fix the bug, re-build the image and run the container again. Then click the debug icon on the
toolbar.

C/C++ Chapter 4

41

The program now continues without exiting with a usage message. Click Step over a couple of times,
inspect variables or explore the interface. Click resume program a few times until the program
completes.

Upon finishing the program, it should display the reversed string and gdbserver exits.

$ docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
 -p2159:2159reverser-arg-debug:latest "noel sees leon"

Process ./reverser.debug created; pid = 9
Listening on port 2159
Remote debugging from host ::ffff:172.17.0.1, port 39550
Reversed string: noel sees leon

C/C++ Chapter 4

42

Note:

See CLion’s documentation for more information about debugging in CLion.

C/C++ Chapter 4

43

https://www.jetbrains.com/help/clion/debugging-code.html

Java, C, and Python

Alpaquita Linux:
Debugging apps running
in Docker with JetBrains
and VSCode

	Alpaquita Linux: Debugging apps running in Docker with JetBrains and VSCode: Java, C, and Python
	Contents
	1. Overview
	2. Java
	Prerequisites
	Dockerizing the PetClinic application
	Application overview
	Clone the PetClinic application from GitHub
	Dockerfile
	Building the petclinic-liberica image

	Creating a debugging image
	Overview
	Edit Dockerfile.debug
	Build and run debugging image

	Remote debugging using IntelliJ IDEA
	Configure remote debugging

	3. Python
	Prerequisites
	Dockerizing a FastAPI application
	Application: quadratic equation solver
	main.py
	Dockerfile
	requirements.txt

	Building a debugging image
	Dockerfile.debug

	Configuring VSCode for remote debugging
	Install extensions
	Create launch.json
	Start debugging

	4. C/C++
	Prerequisites
	Dockerizing a C application
	Application: String reverser
	main.c
	Makefile
	Dockerfile
	Modified main.c

	Creating a debugging image
	Updated Makefile
	Dockerfile.debug
	Building the image and running the container

	Configuring CLion for remote debugging

