
Alpaquita Linux
Using Firecracker and QEMU
microVMs

Alpaquita Linux
Revision 1.0
March 2025

Copyright © BellSoft Corporation 2018-2025.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com

Contents

1. Introduction 5

Firecracker VM 5

Reference Links 5

Alpaquita Linux 5

2. Performance and Resource Usage 7

3. Enhanced Security and Isolation 8

4. Performance Comparison: Firecracker VM vs

QEMU 9

5. Deploying Alpaquita with Firecracker 11

Setting up networking for the Guest VM 11

Verifying network configuration 12

Setting up vmlinux and rootfs 13

Download Alpaquita Linux root filesystem and kernel 13

Configure SSH access for the Guest 14

Configure DNS resolution for the Guest 14

Fine-tune the Alpaquita rootfs 14

Creating an ext4 Root Filesystem Image 15

Downloading official Firecracker VM binaries 16

Preparing Alpaquita microVM configuration 16

Launching Firecracker VM 17

Start Firecracker directly 17

Start Firecracker using the Jailer 18

1. Introduction

Firecracker VM

Firecracker is an open-source virtualization technology that is specifically designed for creating and
managing secure, lightweight virtual machines (microVMs). Originally developed by Amazon Web
Services (AWS) for their serverless computing platform, AWS Lambda and AWS Fargate, Firecracker
has gained popularity due to its focus on speed, security, and efficiency. It is built on top of the Linux
Kernel-based Virtual Machine (KVM) and is optimized for running transient and short-lived workloads,
such as serverless functions, microservices in multi-tenant environments.

Reference Links

For more information on Firecracker VM, refer to the following resources:

• Firecracker GitHub. This is the official repository for Firecracker, containing documentation, source
code, and examples.

• Quick Start Guide. A step-by-step guide to setting up and running Firecracker.

• Firecracker API Documentation. Learn how to interact with Firecracker programmatically using its
API.

• CPU Templates Documentation. This document provides detailed information on CPU templates
and supported CPU features.

• Firecracker Jailer Documentation.

Alpaquita Linux

Alpaquita Linux is designed to work seamlessly with Firecracker VM, offering a streamlined setup
process that eliminates the need for custom kernel compilation or complex configurations:

• Alpaquita Linux kernel (vmlinux) - pre-built and optimized for Firecracker VM, ensuring
compatibility and performance out of the box.

Introduction Chapter 1

5

https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker/blob/main/docs/getting-started.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/api_requests
https://github.com/firecracker-microvm/firecracker/blob/main/docs/cpu_templates/cpu-templates.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/jailer.md

• Root Filesystem (rootfs) - even though the root filesystem can be easily created using Alpaquita’s
base Docker images, we also provide a ready-to-use microVM rootfs for your convenience. This
rootfs can be downloaded and customized to meet your specific needs. Additionally, you can check
and download the Dockerfile used to build the rootfs and adjust it to meet your specific
requirements.

Introduction Chapter 1

6

2. Performance and Resource
Usage

While Firecracker VM provides stronger security than containers, it is also more resource-efficient than
traditional VMs like QEMU. Here’s how Firecracker VM compares to containers and QEMU in terms of
performance and resource usage:

• Startup Time - Firecracker VM with Alpaquita Linux is fully initialized in less than 380ms (Intel
Skylake machine), which is slower than containers but significantly faster than traditional VMs.

• Resource Usage - Firecracker VM uses more memory than containers but less than QEMU. In our
tests, Firecracker VM with Alpaquita Linux used half the memory consumed by QEMU.

Performance and Resource Usage Chapter 2

7

3. Enhanced Security and
Isolation

Firecracker VM is designed to provide strong isolation while maintaining lightweight and fast
performance. The following list contains the key advantages of Firecracker VM over containers and
QEMU:

• Hardware-Level Isolation - Firecracker VM uses KVM to create microVMs that are isolated from
the host and other VMs. Each microVM has its own virtualized hardware, including CPU and I/O
devices. Configuring CPU features in Firecracker VM helps you optimize the microVM for your
specific workload requirements.

• Minimal Attack Surface:

◦ Firecracker VM emulates only a minimal set of devices, such as virtio-net for networking and
virtio-blk for storage, further reducing the attack surface compared to QEMU, which emulates a
wide range of devices.

◦ Containers rely on the host kernel and its extensive set of system calls, which increases the
attack surface.

◦ The Firecracker and process is statically built and can be easily jailed using cgroups and
seccomp.

• Multi-Tenant Security: Firecracker VM is ideal for multi-tenant environments, where multiple users
or applications share the same physical hardware. Its strong isolation guarantees that one tenant
cannot access or interfere with another tenant’s resources.

• CI/CD Pipelines: Firecracker VM can be used to create ephemeral environments for testing and
deployment with specific CPU capabilities, reducing the time required to spin up and tear down
environments.

Enhanced Security and Isolation Chapter 3

8

https://github.com/firecracker-microvm/firecracker/blob/main/docs/cpu_templates/cpu-templates.md
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html

4. Performance Comparison:
Firecracker VM vs QEMU

To demonstrate the performance benefits of Firecracker VM, we conducted a series of tests on
Alpaquita Linux, comparing Firecracker VM with QEMU. All tests were performed on the Intel Core i5-
6600 bare-metal machine, ensuring a consistent environment for both virtualization technologies. Each
guest VM was allocated 1 CPU core and 128MB of RAM, with Alpaquita Linux serving as the operating
system for both the host and the guest VMs. Below, we present the average results of our performance
evaluation.

• Login time: it is the final mark in /etc/inittab so it means all the services, including sshd, are already
running by this time, the network is up and functional. This time point includes firecracker/qemu
process startup too since we measured it via external socket started right before microVM launch.

• Resource Usage: Firecracker VM uses significantly less memory than QEMU, with a maximum RSS
(Resident Set Size) of 82 MB compared to 163 MB for QEMU. This makes Firecracker VM more
resource-efficient while still providing the security benefits of a full VM.

For benchmarking, we used two types of the QEMU options to boot vmlinux and rootfs, ensuring a
fair comparison with Firecracker:

• default machine type:

Performance Comparison: Firecracker VM vs QEMU Chapter 4

9

qemu-system-x86_64 \
 -cpu host -enable-kvm -smp 1 -m 128m \
 -kernel vmlinux \
 -append "console=ttyS0 quiet trace_clock=local root=/dev/vda" \
 -drive file=rootfs.ext4,if=virtio \
 -nographic -serial mon:stdio \
 -device virtio-net-pci,netdev=net0,mac=06:00:AC:10:00:02 \
 -netdev tap,id=net0,ifname=tap0,script=no,downscript=no \
 -no-reboot

• microvm machine type (was inspired by firecracker)

qemu-system-x86_64 -M microvm \
 -cpu host -enable-kvm -smp 1 -m 128m \
 -kernel vmlinux \
 -append "console=ttyS0 pci=off quiet trace_clock=local root=/dev/vda" \
 -drive file=rootfs.ext4,format=raw,id=blk0 \
 -device virtio-blk-device,drive=blk0 \
 -nographic -serial mon:stdio \
 -device virtio-net-device,netdev=net0,mac=06:00:AC:10:00:02 \
 -netdev tap,id=net0,ifname=tap0,script=no,downscript=no \
 -no-reboot

However, at first, it resulted in increased kernel boot time due to a failed rtc_cmos probe. To resolve
this, we explicitly enabled the RTC: -M microvm,rtc=on. While this significantly improved boot times,
unfortunately the memory usage remained consistent with the default machine type.

Performance Comparison: Firecracker VM vs QEMU Chapter 4

10

https://www.qemu.org/docs/master/system/i386/microvm.html

5. Deploying Alpaquita with
Firecracker

Setting up networking for the Guest VM

If your use case does not require network connectivity for the guest VM, you can skip this section and
proceed directly to preparing the vmlinux kernel and rootfs filesystem.

To enable network connectivity for the guest VM, configure a TUN/TAP device and set up nftables
rules to forward traffic between the guest VM and the host’s default gateway. The following script
automates this process:

#!/bin/sh -e

Install required packages
sudo apk update
sudo apk add cmd:jq iproute2 nftables uuidgen

Load the TUN/TAP kernel module
sudo modprobe tun tap

Define network settings
TAP_DEV="tap0"
TAP_HOST_IP="172.16.0.1"
TAP_GUEST_IP="172.16.0.2"
MASK_SHORT="/30" # Subnet mask for the TAP interface
Host interface for outbound traffic
HOST_IFACE=$(ip -j route list default | jq -r '.[0].dev')

Set up the TAP device
Delete existing TAP device (if any)
sudo ip link del "$TAP_DEV" 2> /dev/null || true
sudo ip tuntap add dev "$TAP_DEV" mode tap # Create a new TAP device
Assign an IP address to the TAP device
sudo ip addr add "${TAP_HOST_IP}${MASK_SHORT}" dev "$TAP_DEV"
Bring the TAP device online
sudo ip link set dev "$TAP_DEV" up

Deploying Alpaquita with Firecracker Chapter 5

11

Enable IP forwarding
sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

Configure nftables for NAT and traffic forwarding
sudo nft add table firecracker
sudo nft 'add chain firecracker postrouting { type nat hook postrouting
priority srcnat; policy accept; }'
sudo nft 'add chain firecracker filter { type filter hook forward priority
filter; policy accept; }'
sudo nft add rule firecracker postrouting ip saddr $TAP_GUEST_IP oifname
$HOST_IFACE counter masquerade
sudo nft add rule firecracker filter iifname tap0 oifname eth0 accept

Configuration details:

• The host is assigned the 172.16.0.1 IP address, and the guest will use 172.16.0.2.

• A NAT rule is added to masquerade traffic from the guest VM (172.16.0.2) to the host’s default
gateway.

• If the subnet 172.16.0.0/30 is already in use on your host system, you can modify the
TAP_HOST_IP and TAP_GUEST_IP variables. Ensure that the Firecracker configuration file
(alpaquita.json) is updated accordingly .

Verifying network configuration

Check nftables rules:

sudo nft list table firecracker

Expected output:

table ip firecracker {
 chain postrouting {
 type nat hook postrouting priority srcnat; policy accept;
 ip saddr 172.16.0.2 oifname "eth0" counter packets 0 bytes 0 masquerade
 }

 chain filter {
 type filter hook forward priority filter; policy accept;
 iifname "tap0" oifname "eth0" accept
 }
}

Deploying Alpaquita with Firecracker Chapter 5

12

Check TAP Device:

ip addr show tap0

Expected output:

38: tap0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state
DOWN group default qlen 1000
 link/ether e6:38:b2:53:2f:c0 brd ff:ff:ff:ff:ff:ff
 inet 172.16.0.1/30 scope global tap0
 valid_lft forever preferred_lft forever
 inet6 fe80::e438:b2ff:fe53:2fc0/64 scope link proto kernel_ll
 valid_lft forever preferred_lft forever

Setting up vmlinux and rootfs

Download Alpaquita Linux root filesystem and kernel

To set up Alpaquita Linux for Firecracker, download the root filesystem (rootfs) and the kernel
(vmlinux). Use the following commands to fetch these components:

Define system architecture and libc variant (glibc or musl)
ARCH="$(uname -m)"
LIBC=glibc # Replace with "musl" if using musl libc

Create a directory for the root filesystem
mkdir rootfs

Download and extract the Alpaquita Linux root filesystem.
Note that sudo is required to preserve file ownership
(alternatively use fakeroot or container environment).
wget -q -O - https://packages.bell-
sw.com/alpaquita/${LIBC}/stream/releases/${ARCH}/alpaquita-microvm-rootfs-
stream-latest-${LIBC}-${ARCH}.tar.gz | sudo tar -C rootfs -xz

Download the Alpaquita Linux kernel
wget -q -O - https://packages.bell-
sw.com/alpaquita/${LIBC}/stream/releases/${ARCH}/alpaquita-microvm-vmlinux-
stream-latest-${LIBC}-${ARCH}.xz | unxz > vmlinux

Deploying Alpaquita with Firecracker Chapter 5

13

Configure SSH access for the Guest

To enable SSH login to the guest system, generate an SSH key pair and copy the public key to the root
filesystem:

Generate an SSH key pair (skip if you already have one)
ssh-keygen -f id_rsa -N ""

Copy the public key to the root filesystem for SSH authentication
sudo cp id_rsa.pub rootfs/.ssh/authorized_keys

Configure DNS resolution for the Guest

To ensure the guest system can resolve domain names, copy the host’s DNS configuration
(resolv.conf) to the guest root filesystem:

sudo cp /etc/resolv.conf rootfs/etc/

Fine-tune the Alpaquita rootfs

• chroot command

If you want to further customize the Alpaquita rootfs after it has been created and adjusted in
the previous steps, you can run the chroot command. This helps you enter the rootfs environment
and make changes directly:

sudo chroot rootfs /bin/sh

For example, once inside the chroot environment, we can install JDK:

apk update
apk add openjdk23

After adding modifications, exit the chroot environment:

exit

• docker/podman commands

For users who need to create the rootfs from scratch, we provide the Dockerfile.rootfs file
used to build the original Alpaquita microVM tarball. This approach is more complex, but offers
complete control over the rootfs creation process. The following steps will help you get started:

Deploying Alpaquita with Firecracker Chapter 5

14

Download the Dockerfile.rootfs from the official Alpaquita GitHub repository so you have
something to start with:

wget https://raw.githubusercontent.com/bell-
sw/Alpaquita/refs/heads/master/microvm/\
Dockerfile.rootfs

Edit the Dockerfile.rootfs file to your specific needs. For example:

COPY resolv.conf /etc/resolv.conf
RUN apk add <extra-package-name>

After that, rebuild the rootfs with your customizations, specifying the desired variant (stream-
glibc or stream-musl) using the TAG build argument:

docker build --no-cache \
 --output type=tar,dest=rootfs.tar \
 --progress plain \
 --build-arg TAG=stream-glibc \
 -f Dockerfile.rootfs .

Extract the contents of the generated tarball into a newly created rootfs directory:

mkdir rootfs && sudo tar -C rootfs -xf rootfs.tar

Creating an ext4 Root Filesystem Image

Finally, create an ext4-formatted root filesystem image from the extracted root filesystem:

Define the size of the root filesystem image
ROOTFS_SIZE="100M"
NAME=rootfs

Create an empty file of the specified size
truncate -s $ROOTFS_SIZE $NAME.ext4

Format the file as an ext4 filesystem and populate it with the root
filesystem
mkfs.ext4 -d $NAME -F $NAME.ext4

Deploying Alpaquita with Firecracker Chapter 5

15

Downloading official Firecracker VM binaries

ARCH="$(uname -m)"

release_url="https://github.com/firecracker-microvm/firecracker/releases"
latest=$(basename $(curl -fsSLI -o /dev/null -w %{url_effective}
${release_url}/latest))
version="${latest}-${ARCH}"
wget -q -O - ${release_url}/download/${latest}/firecracker-${version}.tgz | tar
-xz

Rename the binaries to "firecracker" and "jailer"
mv release-${version}/firecracker-${version} firecracker
mv release-${version}/jailer-${version} jailer

Preparing Alpaquita microVM configuration

Firecracker VM provides a rich HTTP API for managing microVMs, which makes it easy to integrate
with orchestration tools and automation pipelines.

For demonstration purposes, we’ll use the alpaquita.json configuration file instead:

{
 "boot-source": {
 "kernel_image_path": "vmlinux",
 "boot_args": "console=ttyS0 reboot=k panic=1 pci=off quiet
trace_clock=local"
 },
 "drives": [
 {
 "drive_id": "rootfs",
 "path_on_host": "rootfs.ext4",
 "is_root_device": true,
 "is_read_only": false
 }
],
 "network-interfaces": [
 {
 "iface_id": "eth0",
 "guest_mac": "06:00:AC:10:00:02",
 "host_dev_name": "tap0"

Deploying Alpaquita with Firecracker Chapter 5

16

 }
],
 "machine-config": {
 "vcpu_count": 1,
 "mem_size_mib": 128
 }
}

The guest IP address is converted automatically inside the guest VM (fcnet service) from the hardware
address ("guest_mac"), using the last 4 bytes, such as "06:00:AC:10:00:02" → “172.16.0.2”.

Also, if you skip the host network setup, remove the "network-interfaces" section from
alpaquita.json.

Launching Firecracker VM

Now you can start your microVM. You can start your microVM directly or using the Jailer with a more
secure environment.

Start Firecracker directly

./firecracker --no-api --config-file alpaquita.json

Expected output:

2025-03-18T11:02:29.432333074 [anonymous-instance:main] Running Firecracker
v1.10.1
[...]
2025-03-18T11:02:29.478294133 [anonymous-instance:main] Successfully started
microvm that was configured from one single json

 OpenRC 0.60 is starting up Alpaquita Linux (x86_64)

ssh-keygen: generating new host keys: RSA ECDSA ED25519

Welcome to BellSoft Alpaquita Linux!

login[855]: root login on 'ttyS0'
microvm:~#

You can also connect via ssh:

Deploying Alpaquita with Firecracker Chapter 5

17

ssh -i id_rsa root@172.16.0.2

Start Firecracker using the Jailer

Jailer is a companion tool for Firecracker that enforces additional security measures by running
Firecracker in a chroot environment, dropping privileges, setting resource limits and namespacing.

To streamline the process of setting up and running a Firecracker microVM using the Jailer tool, we’ll
create a wrapper script named jailer.sh. This script automates the configuration, file setup, and
execution of the microVM in a secure, isolated environment.

The following is an example of the jailer.sh script:

Define the configuration file (default: alpaquita.json)
CONFIG="${1:-alpaquita.json}"

Generate a unique ID for the microVM
UNIQ_VM_ID="aq-$(uuidgen)"

Retrieve the current user's UID and GID
USER_ID="$(id -u)"
GROUP_ID="$(id -g)"

Define the base and root directories for Jailer
JAILER_BASE_DIR="/srv/jailer"
JAILER_ROOT_DIR="$JAILER_BASE_DIR/firecracker/$UNIQ_VM_ID/root"

Create the Jailer root directory and copy necessary files
sudo mkdir -p $JAILER_ROOT_DIR
sudo cp $CONFIG vmlinux rootfs.ext4 $JAILER_ROOT_DIR/

Set ownership of the root filesystem to the current user
sudo chown $USER_ID:$GROUP_ID $JAILER_ROOT_DIR/rootfs.ext4

Run Jailer to start the Firecracker microVM
sudo ./jailer \
 --id $UNIQ_VM_ID \
 --uid $USER_ID \
 --gid $GROUP_ID \
 --chroot-base-dir /srv/jailer \
 --exec-file firecracker \
 -- \
 --no-api --config-file $CONFIG

Deploying Alpaquita with Firecracker Chapter 5

18

Once the jailer.sh script is prepared, you can start the Firecracker microVM with the following
commands:

Make the script executable
chmod +x jailer.sh

Run the script to start the microVM
./jailer.sh

Example of the expected output:

2025-03-18T14:31:56.555642425 [aq-60ed995f...:main] Running Firecracker v1.10.1
[...]
2025-03-18T14:31:56.593874464 [aq-60ed995f...:main] Successfully started
microvm that was configured from one single json

 OpenRC 0.60 is starting up Alpaquita Linux (x86_64)

Welcome to BellSoft Alpaquita Linux!

login[886]: root login on 'ttyS0'
microvm:~#

To confirm that Firecracker has successfully transitioned to a restricted environment (chroot, dropped
privileges, and seccomp filters) when using the Jailer tool, we can inspect the process’s attributes. The
following commands help you verify the setup.

Use the ls command to list the contents of the chroot directory:

ls -l /proc/$(pgrep firecracker)/root/

Output:

total 155176
-rw-r--r-- 1 bellsoft bellsoft 104857600 Mar 18 17:32 alpaquita-stream-
glibc.ext4
drwx------ 3 bellsoft bellsoft 4096 Mar 18 17:31 dev
-rwxr-xr-x 1 root root 2707976 Mar 18 17:31 firecracker
-rw-r--r-- 1 root root 4 Mar 18 17:31 firecracker.pid
drwx------ 2 bellsoft bellsoft 4096 Mar 18 17:31 run
-rw-r--r-- 1 root root 555 Mar 18 17:31 alpaquita.json
-rw-r--r-- 1 root root 51306496 Mar 18 17:31 vmlinux-6.6.82-1-lts

Inspect the dev directory within the chroot environment to verify that only essential devices are
exposed:

Deploying Alpaquita with Firecracker Chapter 5

19

ls -l /proc/$(pgrep firecracker)/root/dev/

Output:

total 4
crw------- 1 bellsoft bellsoft 10, 232 Mar 18 17:31 kvm
drwx------ 2 bellsoft bellsoft 4096 Mar 18 17:31 net
crw------- 1 bellsoft bellsoft 1, 9 Mar 18 17:31 urandom

Check the Uid and Gid fields in the process status to confirm that Firecracker is running with dropped
privileges:

grep -E '([UG]id|Seccomp)' /proc/$(pgrep firecracker)/status

Output:

Uid: 1000 1000 1000 1000
Gid: 1000 1000 1000 1000
Seccomp: 2
Seccomp_filters: 1

Deploying Alpaquita with Firecracker Chapter 5

20

Using Firecracker and
QEMU microVMs

Alpaquita Linux

	Alpaquita Linux: Using Firecracker and QEMU microVMs
	Contents
	1. Introduction
	Firecracker VM
	Reference Links

	Alpaquita Linux

	2. Performance and Resource Usage
	3. Enhanced Security and Isolation
	4. Performance Comparison: Firecracker VM vs QEMU
	5. Deploying Alpaquita with Firecracker
	Setting up networking for the Guest VM
	Verifying network configuration

	Setting up vmlinux and rootfs
	Download Alpaquita Linux root filesystem and kernel
	Configure SSH access for the Guest
	Configure DNS resolution for the Guest
	Fine-tune the Alpaquita rootfs

	Creating an ext4 Root Filesystem Image
	Downloading official Firecracker VM binaries
	Preparing Alpaquita microVM configuration
	Launching Firecracker VM
	Start Firecracker directly
	Start Firecracker using the Jailer

