
Liberica JDK
Guide to JVM memory
configuration options

Liberica JDK
Revision 1.0
April 2024



Copyright © BellSoft Corporation 2018-2024.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com


Contents

1. Introduction  5

2. Heap size options  6

3. RAM consumption  7

4. GC selection and logging  8

Selection  8

Logging  9

5. GC management  11

6. How to handle OutOfMemoryError  12

7. Working with Strings  13



8. Other useful parameters  14

9. Conclusion  15



1. Introduction

Reducing the memory footprint of the application requires meticulous optimizations with due
consideration of all variables. This document contains an overview of the most important JVM flags
related to memory management.

Introduction Chapter 1

5



2. Heap size options

JVM parameter Description

-Xms Sets the initial heap size

-Xmx Sets the maximum heap size

-XX:MinHeapFreeRatio Sets the minimum percentage of free space
after garbage collection

-XX:MaxHeapFreeRatio Sets the maximum percentage of free space
after garbage collection

-XX:MaxDirectMemorySize Sets the limit for the memory allocated to direct
byte buffers

In some cases, setting the maximum and minimum Java heap size is enough to optimize JVM memory
footprint. The optimal heap size depends on your application, so you should experiment with the values
before settling on a final number.

Setting min. and max. proportion of heap free after GC helps to avoid unnecessary expansion and
shrinking of free space and release the unused memory without affecting the performance
significantly.

For instance, if you set -XX:MinHeapFreeRatio=40 and -XX:MaxHeapFreeRatio=70, then the
generation expands if the free space percentage goes below 40% and contracts if the free space
exceeds 70%.

Direct byte buffers are used by the JVM to perform native I/O operations. As opposed to non-direct byte
buffers stored in the heap, direct ones reside outside the heap and therefore are not affected by heap
size parameters or garbage collection. By default, the JVM chooses the size of the direct size buffers
automatically based on the available memory, so setting the -XX:MaxDirectMemorySize helps to
prevent excessive resource consumption.

Heap size options Chapter 2

6



3. RAM consumption

JVM parameter Description

-XX:MaxRAM Sets the max. amount of total memory used by
the JVM

-XX:MaxRAMFraction Sets the RAM limit for JVM in fractions

-XX:MaxRAMPercentage Sets the RAM limit for JVM per cent

The JVM flags adjusting the heap size do not affect the total memory consumption by the JVM. To limit
the total RAM consumption, use MaxRam flags. The heap size will be adjusted accordingly. For
instance, if you have 1 GB of memory, setting -XX:MaxRAMPercentage=50 (or
-XX:MaxRAMFraction=2) will make the JVM allocate approx. 500 MB to heap.

These arguments are especially useful in the case of containerized applications, where they help to
adjust the heap size based on the available container memory.

RAM consumption Chapter 3

7



4. GC selection and logging

Selection

JVM parameter Description

-XX:+UseSerialGC Enables Serial Garbage Collector

-XX:+UseParallelGC Enables Parallel Garbage Collector

-XX:+UseConcMarkSweepGC Enables Concurrent Mark Sweep Garbage
Collector (available up to Java 8 only)

-XX:+UseG1GC Enables G1 Garbage Collector

-XX:+UseZGC (since Java 15) Enables Z Garbage Collector (available since
Java 11)

-XX:+UnlockExperimentalVMOptions
-XX:+UseZGC (since Java 11 up to 15)

-XX:+UseShenandoahGC Enables Shenandoah Garbage Collector
(absent in Oracle Java, available in major
OpenJDK distributions)

The default garbage collection settings are enough for many applications. If you would like to enhance
some KPIs (in this case, memory footprint), try switching to another collector, whose defaults are more
beneficial to your app, without delving into the intricacies of GC tuning.

Java provides a set of GC implementations, each tailored to specific needs and use cases:

• Serial GC works in one thread and freezes all app threads while performing collection.

• Parallel GC also freezes all threads, but works in multiple threads itself.

GC selection and logging Chapter 4

8



• CMS GC does not freeze application threads, but instead, uses a few of them to perform its tasks.
This collector was deprecated in Java 9 in favor of a more advanced G1 GC.

• G1 GC utilizes the Garbage-First approach by dividing the heap in areas and collects the garbage
in mostly free areas thus releasing lots of memory.

• Z GC performs expensive work concurrently with the program and does not freeze the app threads
for more than 10 ms.

• Shenandoah GC performs most of its work concurrently with the program, including the concurrent
compaction, so the GC pause times are not directly proportional to the heap size.

Logging

JVM parameter Description

-Xlog:gc*:<gc.log file path>:time Stores the GC logging data at the specified
location

-XX:PrintGC Enables basic logging in Java 8

-XX:+PrintGCDetails Activates detailed logging in Java 8+

-XX:NumberOfGCLogFiles Sets the limit for the number of GC logs in Java
8

-XX:GCLogFileSize Sets the max. size of a GC log file in Java 8

Before adjusting garbage collector settings, learn to understand its behavior. GC logs are text files that
provide exhaustive information about GC work: total GC time, memory reclamation and allocation, etc.

Note that GC logging parameters vary between Java 8 and Java 9+:

• -XX:+PrintGCDetails and -Xlog:gc in Java 9+ substitute -XX:PrintGC in Java 8;

• Java 8 includes the -XX:+UseGCLogFileRotation parameter that enables the rotation of GC
logs. It is used together with the -XX:NumberOfGCLogFiles and -XX:GCLogFileSize flags.
However, these functions were deprecated in newer Java versions.

A new unified GC logging system is implemented with JEP 271. To learn more about the new logging

GC selection and logging Chapter 4

9

https://openjdk.org/jeps/271


syntax, run:

-Xlog:help

GC selection and logging Chapter 4

10



5. GC management

JVM parameter Description

-XX:GCTimeRatio Sets the limit for GC execution time

-XX:AdaptiveSizePolicyWeight Specifies how much previous GC times are
taken into consideration when calculating
current timing goals

-XX:+UseCGroupMemoryLimitForHeap Sets the heap size based on the available
container memory

-XX:ParallelGCThreads Sets the number of Parallel GC threads

XX:G1HeapRegionSize Sets the size of a G1 region

XX:InitiatingHeapOccupancyPercent Sets the heap occupancy threshold triggering a
marking cycle

Each GC comes with numerous settings that enable the developers to adjust latency, throughput, or
memory. The table above provides memory related settings.

It should be noted that by default, -XX:GCTimeRatio is set to 99, which means that the application
gets 99% of total execution time, and the collector can run for not more than 1% of the time. The
-XX:GCTimeRatio and -XX:AdaptiveSizePolicyWeight parameters are helpful when using
-XX:MinHeapFreeRatio and -XX:MaxHeapFreeRatiowith Parallel GC.

GC management Chapter 5

11



6. How to handle
OutOfMemoryError

JVM parameter Description

-XX:+HeapDumpOnOutOfMemoryError Dumps heap into a file in the case of
OutOfMemoryError

-XX:HeapDumpPath Specifies the path for the file with heap data

-XX:OnOutOfMemoryError="< cmd args >;<
cmd args >"

Specifies actions to be performed in the case of
OutOfMemoryError

OutOfMemoryError leads to the application crash and is hard to troubleshoot. The above parameters
provide the developers with a lot of information related to the error, so it is easier to detect memory
leaks.

How to handle OutOfMemoryError Chapter 6

12



7. Working with Strings

JVM parameter Description

-XX:+UseStringDeduplication Removes duplicate strings during GC (with G1
GC only)

-XX:+UseStringCache Caches commonly allocated strings in the
String pool

-XX:+UseCompressedStrings Uses a byte[] for Strings that can be
represented as pure ASCII

-XX:+OptimizeStringConcat Optimizes String concatenation operations
when possible

java.lang.String is the most commonly used Java class. No wonder that Strings take up a
significant part of the application memory. We can release the resources by removing duplicate strings
and optimizing the String operations with the above parameters.

Working with Strings Chapter 7

13



8. Other useful parameters

JVM parameter Description

-XX:LargePageHeapSizeThreshold Uses large pages if max. heap is at least as big
as the specified value

-XX:LargePageSizeInBytes Sets the large page size for the heap

XX:+UseCompressedOops Enables the use of compressed pointers (32-bit
instead of 64-bit) for heaps less than 32 GB

-XX:+TieredCompilation Disables intermediate compilation tiers

-XX:TieredStopAtLevel=1 Uses only the C1 compiler

-XX:ThreadStackSize Sets the size of thread stack space

The -XX:LargePageHeapSizeThreshold and -XX:LargePageSizeInBytes flags enable the
developers to operate with large pages (a technique to reduce the pressure on the processors
Translation-Lookaside Buffer caches) and make better use of virtual hardware resources.

The -XX:+TieredCompilation and -XX:TieredStopAtLevel=1 can be used with Serial GC to turn
off the optimizing compiler and reduce memory footprint in some cases. Use them when memory
consumption is the only important KPI.

Memory to thread stacks is allocated outside the heap, so it is not affected by heap size parameters.
The -XX:ThreadStackSize flag enables the developers to reduce the size of thread stacks.

Other useful parameters Chapter 8

14



9. Conclusion

There are a few more JVM options left unmentioned in this document, such as the ones adjusting the
size of different heap spaces (permanent generation, young generation, Eden, survivor). The reason is
that these parameters require extremely fine-tuning without significant overall improvement of
memory consumption.

Conclusion Chapter 9

15



Guide to JVM memory
configuration options

Liberica JDK


	Liberica JDK: Guide to JVM memory configuration options
	Contents
	1. Introduction
	2. Heap size options
	3. RAM consumption
	4. GC selection and logging
	Selection
	Logging

	5. GC management
	6. How to handle OutOfMemoryError
	7. Working with Strings
	8. Other useful parameters
	9. Conclusion

