
Liberica JDK
Guide to JVM memory
configuration options

Liberica JDK
Revision 2.0
July 2025



Copyright © BellSoft Corporation 2018-2025.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com


Contents

1. Introduction  6

2. Heap and RAM size options  7

Heap size options  7

Options for limiting total RAM consumption  8

3. Garbage Collection mechanism  9

Overview  9

How does Garbage Collection work  9

Advantages of automatic Garbage Collection  9

Disadvantages of automatic Garbage Collection  10

Manual invocation of GC  10

Types of Garbage Collectors in JDK  10

Serial Garbage Collector  11

Parallel Garbage Collector  12

Concurrent Mark Sweep Garbage Collector  13

G1 Garbage Collector  14

Z Garbage Collector  17



Shenandoah Garbage Collector  18

Epsilon Garbage Collector  19

Selecting GC  20

Garbage Collection and JDK versions  20

Parameters to select GC  21

4. GC management  24

Common parameters for all GCs  24

Key GC specific parameters  24

SerialGC/ParallelGC  24

G1 GC  25

ZGC  26

Shenandoah GC  26

Example setup  26

Serial GC small board  26

G1 GC Small board  27

Parallel GC server  27

G1 GC server  27

5. Logging  29

6. How to handle OutOfMemoryError  30



7. Working with Strings  31

8. Other useful parameters  32

Appendix A: GC support in different environments  33

Standard JDK  33

JDK Performance Edition  38



1. Introduction

Reducing the memory footprint and increasing the performance of the application requires meticulous
optimizations with due consideration of all variables. This document contains an overview of the
Garbage Collection options in JDK and the most important JVM flags related to memory management.

Introduction Chapter 1

6



2. Heap and RAM size options

Heap size options

The heap is where your object data is stored. This area is then managed by the garbage collector
selected at startup. Most tuning options relate to sizing the heap and choosing the most appropriate
garbage collector for your situation.

JVM parameter Description

-Xms Sets the initial heap size

-Xmx Sets the maximum heap size

-XX:MinHeapFreeRatio Sets the minimum percentage of free space after garbage collection

-XX:MaxHeapFreeRatio Sets the maximum percentage of free space after garbage
collection

-XX:MaxDirectMemorySize Sets the limit for the memory allocated to direct byte buffers

In some cases, setting the maximum and minimum Java heap size is enough to optimize JVM memory
footprint. The optimal heap size depends on your application, so you should experiment with the values
before settling on a final number.

Setting min. and max. proportion of heap free after GC helps to avoid unnecessary expansion and
shrinking of free space and release the unused memory without affecting the performance
significantly.

For instance, if you set -XX:MinHeapFreeRatio=40 and -XX:MaxHeapFreeRatio=70, then the
generation expands if the free space percentage goes below 40% and contracts if the free space
exceeds 70%.

Direct byte buffers are used by the JVM to perform native I/O operations. As opposed to non-direct byte
buffers stored in the heap, direct ones reside outside the heap and therefore are not affected by heap
size parameters or garbage collection. By default, the JVM chooses the size of the direct size buffers

Heap and RAM size options Chapter 2

7



automatically based on the available memory, so setting the -XX:MaxDirectMemorySize helps to
prevent excessive resource consumption.

Options for limiting total RAM consumption

JVM parameter Description

-XX:MaxRAM Sets the max. amount of total memory used by the JVM

-XX:MaxRAMFraction Sets the RAM limit for JVM in fractions

-XX:MaxRAMPercentage Sets the RAM limit for JVM per cent

The JVM flags adjusting the heap size do not affect the total memory consumption by the JVM. To limit
the total RAM consumption, use MaxRam flags. The heap size will be adjusted accordingly. For
instance, if you have 1 GB of memory, setting -XX:MaxRAMPercentage=50 (or
-XX:MaxRAMFraction=2) will make the JVM allocate approx. 500 MB to heap.

These arguments are especially useful in the case of containerized applications, where they help to
adjust the heap size based on the available container memory.

Heap and RAM size options Chapter 2

8



3. Garbage Collection mechanism

Overview

Garbage collection (GC) is an important part of JVM that has effect on the overall performance of an
application. Garbage collection is a process of freeing up memory by deleting unused objects from the
heap. An object is considered eligible for GC when it becomes unreachable, meaning there are no
references to it. GC in JDK is automatic. There are ways of invoking the GC manually, but it is not the
best practice.

How does Garbage Collection work

When the application starts, the heap is almost empty. While the threads are working, the heap is
filling up, until it reaches the state where the new objects cannot be created any more. It triggers
garbage collection.

All garbage collectors pause the application threads for some time (Stop-theWorld), scan the
application thread stacks, and mark all objects that are directly accessible from those stacks. Then they
mark all reachable objects. When all reachable objects are marked, the rest is treated as garbage and
removed. Concurrent collectors resume the stopped application threads as soon as possible and do
part of the GC work along with application.

There is always a tradeoff between application pause time and GC throughput. Doing all GC tasks
when application threads are paused gives a better throughput, but longer stop-the-world time.

Despite that all GCs perform the steps above, the implementation details are different and each
implementation has its strength and weakness.

Advantages of automatic Garbage Collection

• No need for manual memory allocation/deallocation, which saves the developer’s time and
minimizes bugs related to human error;

• Efficient memory usage as the heap gets cleaned as soon as it fills up;

Garbage Collection mechanism Chapter 3

9



• Reduced risk of memory leaks — most of these cases are successfully handled by the collector.

Disadvantages of automatic Garbage Collection

• Lack of control over memory management leaves little space for improving the resource usage;

• While some applications may benefit from automatic GC, larger enterprise apps may require
manual GC tuning to achieve maximal performance;

• Automatic garbage collection still allows incorrectly designed applications to create memory leaks,
that are hard to debug.

Manual invocation of GC

There is a way of invoking the GC manually by calling System.gc().

Important:

Explicitly calling System.gc() in your code is an unrecommended practice.

System.gc() requests to trigger Full GC as soon as possible, which means the JVM is notified about
the garbage collections request, but the JVM decides by itself when to perform garbage collection
depending on lots of parameters and may induce Full GC when the whole heap gets cleaned, which
might have disastrous impact on performance. Use the -XX:+DisableExplicitGC flag to prohibit the
explicit execution of GC. It also does not allow you to trigger GC through code with calling
System.gc(). See GC management for GC-specific flags and options.

Types of Garbage Collectors in JDK

JDK provides numerous opportunities for GC tuning with various GC implementations with their own
strengths. The choice of a garbage collector depends on the defined goals.

For instance, Serial GC can be suitable for memory and CPU constraint devices, but there will be long
pauses in application work especially if a significant amount of memory is involved. Parallel GC gives
you the balance between pause and throughput. After selecting the collector, you can start the tuning
process based on GC capabilities. Garbage collection adjustment is a balancing act: large heap means
longer pauses, short pauses lead to a more frequent GC activation and so on.

Garbage Collection mechanism Chapter 3

10



Below you will find the summary of key garbage collectors available in JVM with distinguishing
features, usage suggestions, and references to JDK Enhancement Proposals, known as JEPs.

Serial Garbage Collector

Serial GC is the oldest and simplest GC implementation in JDK. It is utilized in single-threaded
environments as it freezes all threads while it performs the collection and works in one thread itself.

Serial GC is suitable for client-side applications without low pause requirements. Note that this GC is
used automatically if the RAM limit is set to less than 1792 MB or there are less than 2 CPUs.
Otherwise, to enable Serial GC, use the following command:

java -XX:+UseSerialGC -jar yourApp.java

GC Workings

The heap is split into two areas, young gen and old gen. The young gen also contains a survivor
space. The algorithm is based on the "die young" idea - most objects won’t survive more than one
GC. When an object of regular size is created, it is placed to Eden. When Eden becomes full, minor
collection is started. The VM stops application threads, scans threads and marks all objects
reachable from the thread root and from each other. Then live objects are copied to one of the
survival spaces. Objects that survive more than MaxTenuringThreshold GC cycles are promoted to
Tenured space (old gen). If the object is too large to fit into Eden space it will be allocated directly
to the Tenured space. When the tenured space fills up, the FullGC happens. Application threads
stop for significant time until all garbage is evacuated and the entire heap is compacted.

Usage

The Serial GC can be suitable for memory and CPU constraint devices. On today’s hardware, the
Serial GC can efficiently manage a lot of applications with a few hundred MBs of JDK heap, with
relatively short pauses (around a couple of seconds for full garbage collections).

Another popular use for the Serial GC is in environments where a high number of JVMs run on the

Garbage Collection mechanism Chapter 3

11



same machine (in some cases, more JVMs than available processors!). In such environments when
a JVM does a garbage collection it is better to use only one processor to minimize the interference
on the remaining JVMs, even if the garbage collection might last longer.

Embedded hardware and container environment with minimal memory and few cores are other
areas where the Serial GC can be quite useful.

JEPs

• JEP 366: Deprecate the combination of the Parallel Scavenge and Serial Old garbage
collection algorithms.

Parallel Garbage Collector

ParallelGC is the evolution of SerialGC destined for a multiprocessor environment. It shares the same
generational principles but with two significant additions: ParallelGC can use multiple threads to collect
both young (Eden) and old (Tenured) space and have the ergonomics algorithms that automatically
tune internal GC parameters in order to achieve application goals: Maximum pause time (can be set
using -XX:MaxGCPauseMillis=<N>); Throughput - gc time to app time ratio (can be set using
-XX:GCTimeRatio=<N>); Footprint - fit the heap specified by -Xmx.

By default, the number of threads in the collection is calculated based on the processor number. The
number of garbage collector threads can be controlled with the -XX:ParallelGCThreads command-
line option. The following command enables the Parallel GC.

java -XX:+UseParallelGC -jar yourApp.java

GC Workings

ParallelGC follows the same principles as SerialGC, dividing the heap into young (Eden) and old
(Tenured) generations. The garbage collection process occurs during a Stop-the-World (STW)
pause, during which all application threads are paused. The GC may trigger either minor
collection, where only young gen is collected or full collection where GC collects the entire heap.

The GC scans thread roots, marks objects directly reachable from the thread stacks, and then
marks all reachable objects.

While the marking of live objects is still performed by a single thread, multiple threads handle the
promotion of objects from the young generation to the old generation, enhancing efficiency. The
old generation is divided into multiple sections - promotion buffers, where each GC thread copies
objects into its dedicated buffer. This structure enables multiple threads to operate concurrently

Garbage Collection mechanism Chapter 3

12

https://openjdk.org/jeps/366


without locks or interference.

During FullGC, the old generation scanned and collected as well as the young one. Although the
old generation collection itself is handled by a single thread, the compaction process utilizes
multiple threads to optimize performance. However, the use of multiple threads for compaction
can be disabled using the -XX:-UseParallelOldGC flag.

Usage

The Parallel GC can use multiple CPUs to increase throughput. This collector should be used when
a lot of work needs to be done and long pauses are acceptable. For example, batch processing
like printing reports or bills or performing a large number of database queries.

Concurrent Mark Sweep Garbage Collector

Important:

CMS Garbage Collector was deprecated since JDK 9 in favor of a more advanced G1
Garbage Collector according to JEP 291 and removed in later versions as specified in
JEP 363. CMS is not recommended for production applications.

Similar to ParallelGC, CMS follows a two-generation memory layout and employs the same algorithm
for minor (young gen) collections. However, its major (old gen) collection process differs significantly. In
CMS, minor and major collections are always separate, meaning the young generation is not collected
during a major collection cycle. Instead, CMS periodically scans the old generation in the background.
When fragmentation in the old generation exceeds a certain threshold, a major collection is triggered.

During a major collection, CMS briefly pauses all application threads to scan thread roots and mark
objects directly reachable from the thread stacks. After this initial marking phase, application threads
resume while CMS continues marking all reachable objects in the background. Since new objects may
be allocated during this concurrent marking phase, CMS performs an additional short pause at the end
to rescan roots and ensure accuracy. Once the application resumes, the garbage is evacuated in the
background, minimizing pauses but increasing CPU load.

To enable CMS GC, run the following command:

java -XX:+UseConcMarkSweepGC -jar yourApp.java

This collector was deprecated since JDK 9, so you get the following warning when trying to run it with

Garbage Collection mechanism Chapter 3

13

https://openjdk.org/jeps/291
https://openjdk.org/jeps/363


JDK 11:

java -XX:+UseConcMarkSweepGC --version
OpenJDK 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in
version 9.0 and will likely be removed in a future release.

It has already been removed from the code base in newer versions, and the following message
appears in JDK 17:

Unrecognized VM option 'UseConcMarkSweepGC'

JEPs

• JEP 214: Remove GC Combinations Deprecated in JDK 8.

• JEP 291: Deprecate the Concurrent Mark Sweep (CMS) Garbage Collector.

• JEP 363: Remove the Concurrent Mark Sweep (CMS) Garbage Collector.

G1 Garbage Collector

G1 GC is the default GC implementation designed to replace CMS GC with low latency in mind. It is fit
for any application, but shows the best performance with server-class applications running in a
multiprocessor environment with a large heap. G1 GC utilizes the Garbage-First approach by dividing
the heap into multiple regions and performing the global marking phase to determine the liveliness of
objects.After learning which heap regions are mostly filled with garbage, it first collects garbage in
those regions to free up a lot of memory.

G1 GC copies objects from one or several memory regions into a single region, which enables it to
compact memory. The compaction is performed in parallel on multiprocessor machines, thus reducing
pause times and increasing throughput. In addition, the developers can adjust the maximum pause
time and pause time intervals.

To enable G1 GC, run the following command:

java -XX:+UseG1GC -jar yourApp.java

GC Workings

G1 GC divides the heap into the number of equivalent regions, each of which can be either young
gen (containing Eden and survivor) or old gen, depending on the application needs. As for all
previous collectors, space reclamation efforts are concentrated on young gen with occasional
collection of the old-gen. G1 reclaims space mostly by using evacuation: live objects found within

Garbage Collection mechanism Chapter 3

14

https://openjdk.org/jeps/214
https://openjdk.org/jeps/291
https://openjdk.org/jeps/363


selected memory areas to collect are copied into new memory areas, compacting them in the
process. After an evacuation has been completed, the space previously occupied by live objects is
reused for allocation by the application.

G1 Garbage collection consist of several phases:

1. Young-only phase: This phase starts with a few Normal young collections that promote
objects into the old generation. The transition between the young-only phase and the space-
reclamation phase starts when the old generation occupancy reaches a certain threshold, the
Initiating Heap Occupancy threshold. At this time, G1 schedules a Concurrent Start young
collection instead of a Normal young collection.

2. Concurrent Start: This type of collection starts the marking process in addition to performing
a Normal young collection. Concurrent marking determines all currently reachable (live)
objects in the old generation regions to be kept for the following space-reclamation phase.
While collection marking is still in progress, Normal young collections may occur. Marking
finishes with two special stop-the-world pauses: Remark and Cleanup.

3. Remark: This pause finalizes the marking itself, performs global reference processing and
class unloading, reclaims completely empty regions and cleans up internal data structures.
Between Remark and Cleanup, G1 calculates information to later be able to reclaim free
space in selected old generation regions concurrently, which will be finalized in the Cleanup
pause.

4. Cleanup: This pause determines whether a space-reclamation phase will actually follow. If a
space-reclamation phase follows, the young-only phase completes with a single Prepare
Mixed young collection.

5. Space-reclamation phase: This phase consists of multiple Mixed collections that in addition
to young generation regions, also evacuate live objects of sets of old generation regions. The
space-reclamation phase ends when G1 determines that evacuating more old generation
regions wouldn’t yield enough free space worth the effort.

After space-reclamation, the collection cycle restarts with another young-only phase. As backup,
if the application runs out of memory while gathering liveness information, G1 performs an in-
place stop-the-world full heap compaction (Full GC) like other collectors.

G1 performs garbage collections and space reclamation in stop-the-world pauses. Live objects
are typically copied from source regions to one or more destination regions in the heap, and
existing references to these moved objects are adjusted.

Usage

The G1 GC is a server-class garbage collector, targeted at multiprocessor machines with large
memory. It meets garbage collection (GC) pause time goals with a high probability, while

Garbage Collection mechanism Chapter 3

15



achieving high throughput. The G1 collector:

• Can operate concurrently with applications threads.

• Compact free space without lengthy GC induced pause times.

• Provides more predictable GC pause durations.

• Has less throughput than ParallelGC.

G1 provides a solution for users running applications that benefit from low GC pause despite
decreased throughput.

Applications running today with older garbage collectors would benefit from switching to G1 if
the application has one or more of the following traits.

• Full GC durations are too long or too frequent.

• The rate of object allocation rate or promotion varies significantly.

• Undesired long garbage collection or compaction pauses.

JEPs

• JEP 156: G1 GC: Reduce need for full GCs.

• JEP 192: Reduce the Java heap live-data set by enhancing the G1 Garbage Collector.

• JEP 248: Make G1 the Default Garbage Collector.

• JEP 307: Parallel Full GC for G1 improves the latency of G1 GC during the full collection.

• JEP 344: Make G1 mixed collections abortable if they might exceed the pause target.

• JEP 345: Improve G1 performance on large machines by implementing NUMA-aware memory
allocation.

• JEP 346: Enhance the G1 garbage collector to automatically return Java heap memory to the
operating system when idle.

• JEP 423: Reduce latency by implementing region pinning in G1.

• JEP 475: Simplify the implementation of the G1 garbage collector’s barriers, which record
information about application memory accesses, by shifting their expansion from early in the
C2 JIT’s compilation pipeline to later.

Garbage Collection mechanism Chapter 3

16

https://openjdk.org/jeps/156
https://openjdk.org/jeps/192
https://openjdk.org/jeps/248
https://openjdk.org/jeps/307
https://openjdk.org/jeps/344
https://openjdk.org/jeps/345
https://openjdk.org/jeps/346
https://openjdk.org/jeps/423
https://openjdk.org/jeps/475


Z Garbage Collector

ZGC is a concurrent, single-generation (since JDK 21), region-based, NUMA-aware, compacting
collector. Stop-the-world phases are limited to root scanning, so GC pause times do not increase with
the size of the heap or the live set. ZGC uses a few high bits of each object to keep its reachability
status and access barriers to update these bits.

Z Garbage Collector (ZGC) was introduced in JDK 11 as an experimental feature and obtained
production status starting with JDK 15.

It is a scalable low-latency collector that performs the expensive work concurrently and does not stop
the application threads for more than 10 ms. The most important parameter is the max. heap size (
-Xmx): it should be able to accommodate the live-set of the app and provide enough room for
allocations. To use ZGC, run the following command:

java -XX:+UseZGC -jar yourApp.java

For versions up to JDK 15 ZGC is experimental and the command is slightly different:

java -XX:+UnlockExperimentalVMOptions -XX:+UseZGC -jar yourApp.java

GC Workings

A core principle in ZGC is the use of load barriers in combination with colored object pointers (i.e.,
colored oops). This is what enables ZGC to do concurrent operations, such as object relocation,
while Java application threads are running. From a Java thread’s perspective, the act of loading a
reference field in a Java object is subject to a load barrier. In addition to an object address, a
colored object pointer contains information used by the load barrier to determine if some action
needs to be taken before allowing a Java thread to use the pointer. For example, the object might
have been relocated, in which case when the load barrier triggers, the object pointer will be
updated as required.

Usage

ZGC has been designed to be adaptive and to require minimal manual configuration. During the
execution of the Java program, ZGC dynamically adapts to the workload by resizing generations,
scaling the number of GC threads, and adjusting tenuring thresholds. The main tuning knob is to
increase the maximum heap size.

ZGC is suitable for applications which require low latency. Pause times are independent of the
heap size that is being used. ZGC works well with heap sizes from a few hundred megabytes to
16TB.

Garbage Collection mechanism Chapter 3

17



JEPs

• JEP 333: ZGC: A Scalable Low-Latency Garbage Collector (Experimental).

• JEP 351: Enhance ZGC to return unused heap memory to the operating system.

• JEP 364: Port the ZGC garbage collector to macOS.

• JEP 365: Port the ZGC garbage collector to Windows.

• JEP 376: Move ZGC thread-stack processing from safepoints to a concurrent phase.

• JEP 377: Change the Z Garbage Collector from an experimental feature into a product feature.

• JEP 439: Generational ZGC reduces the GC CPU overhead by making Z GC maintain young
and old objects separately, thus collecting young objects more frequently.

• JEP 474: Switch the default mode of the Z Garbage Collector (ZGC) to the generational mode.
Deprecate the non-generational mode, with the intent to remove it in a future release.

• JEP 490: Remove the non-generational mode of the Z Garbage Collector (ZGC).

Shenandoah Garbage Collector

This is a region-based low-pause parallel and concurrent GC algorithm targeted at large heap
applications. It performs garbage collection concurrently with the running Java application thus
reducing pause times which are independent of the application’s live data size. The GC provides
minimal possible pauses on huge heaps at the cost of extra memory and cpu consumption.

Shenandoah works with all LTS releases and a current JDK release and supports a wide range of
platforms. The OpenJDK community continuously backports improvements and bug fixes to previous
supported JDK versions.

To enable Shenandoah GC, run the following command:

java -XX:+UseShenandoahGC -jar yourApp.java

GC Workings

Shenandoah GC uses some extra pointers to mark live objects and perform compacting without
stopping the application. The GC relies on access barriers to maintain object state, i.e. part of the
GC work is done by the application thread along with application tasks.

The heap is broken up into equal sized regions. A region may contain newly allocated objects,

Garbage Collection mechanism Chapter 3

18

https://openjdk.org/jeps/333
https://openjdk.org/jeps/351
https://openjdk.org/jeps/364
https://openjdk.org/jeps/365
https://openjdk.org/jeps/376
https://openjdk.org/jeps/377
https://openjdk.org/jeps/439
https://openjdk.org/jeps/474
https://openjdk.org/jeps/490


long-lived objects, or a mix of both. Any subset of the regions may be chosen to be collected
during a GC cycle.

GC phases:

1. Initial Marking - Stops the world, scans the heap.

2. Concurrent Marking - Traces the heap marking the live objects, updates any references to
regions evacuated in the previous GC cycle.

3. Final Marking: Stops the world, re-scans the root set, copies and updates roots to point to
region copies. Initiates concurrent compaction. Frees any fully evacuated regions from
previous compaction.

4. Concurrent Compaction: Evacuates live objects from targeted regions.

Each GC cycle consists of two stop the world phases and two concurrent phases.

Usage

Shenandoah’s performance has improved considerably in the last ten-plus years of development,
and it is considered a mature product supported in production environments.

You can use non-generational Shenandoah in huge workloads with neither random nor too much
generational overload. For example, use it for applications with constant allocation of objects.

Shenandoah GC usage may be beneficial in some container applications, but we recommend
testing it first in your environment, because it depends on the use case.

JEPs

• JEP 189: Shenandoah: A Low-Pause-Time Garbage Collector (Experimental)

• JEP 379: Change the Shenandoah garbage collector from an experimental feature into a
product feature.

Epsilon Garbage Collector

Epsilon GC is the most peculiar of all Garbage Collectors because it does not collect any garbage. Its
primary purpose is to allocate memory. Once the available heap is exhausted and the application tries
to allocate more memory than allowed (that is, set by -Xmx), the JVM shuts down with an
OutOfMemoryError.

Garbage Collection mechanism Chapter 3

19

https://openjdk.org/jeps/189
https://openjdk.org/jeps/379


This no-ops GC was introduced in JDK 11 as an experimental feature, but it was decided to keep it
experimental to avoid accidental Epsilon GC enabling in production. So, to use Epsilon GC, you need to
explicitly enable experimental features first:

java -XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC -jar yourApp.java

Usage

Despite the fact that Epsilon GC doesn’t collect any garbage, there are several use cases where it
can be useful:

• Performance testing with Epsilon GC may reveal how fast the application runs without
garbage collection and whether there are performance bottlenecks, which can be clearly seen
without GC-induced performance artifacts.

• Applications that create all necessary objects at start and don’t produce any garbage as well
as short-lived applications that don’t have time to spend all available resources may run
faster without garbage collection.

Otherwise, it is not recommended to use Epsilon GC to avoid unexpected application behavior and
crashes.

JEPs

• JEP 318: Epsilon: A No-Op Garbage Collector (Experimental).

Selecting GC

Garbage Collection and JDK versions

The choice of a garbage collector relies, among other things, on the JDK version you use.

Note:

For the full list of GCs supported in different environments, see Appendix: Standard
JDK and JDK Performance Edition

Garbage Collection mechanism Chapter 3

20

https://openjdk.org/jeps/318


First of all, a certain collector may not be available with your version:

• CMS GC was removed from JDK 14, so it is absent from newer JDK releases;

• ZGC appeared in JDK 11 as an experimental feature and it is now available in JDK 8 and all later
versions;

• Shenandoah GC was introduced in JDK 12 as an experimental feature and became ready for
production-use in JDK 15, so it is absent from older JDK versions;

• Epsilon GC was introduced in JDK 11 and is not available in previous versions.

Secondly, the performance of a chosen GC implementation also depends on the JDK version because
there have been many enhancements introduced to Garbage Collection up until now, and the
improvement process is ongoing. As of January 2025 Java Bug System contained more than 2,000
resolved and integrated fixes and enhancements to G1 GC alone.

Therefore, upgrading the JDK version is key to using the full potential of JDK garbage collectors. But if
your enterprise workloads are based on JDK 8 or 11 and migration is off the table for now, you can use
Liberica JDK Performance Edition that couples JDK 8 or 11 and JVM 17 or JVM 21. So technically, you
stay on JDK 8 or 11, but enjoy the performance of version 17 and 21, including new and improved GC
implementation. See Liberica JDK Performance Edition for more information.

Parameters to select GC

The following table lists parameters that enable a certain GC.

JVM parameter Description

-XX:+UseSerialGC Enables Serial Garbage Collector

-XX:+UseParallelGC Enables Parallel Garbage Collector

-XX:+UseConcMarkSweepGC Enables Concurrent Mark Sweep Garbage Collector
(available up to JDK 8 only)

-XX:+UseG1GC Enables G1 Garbage Collector

Garbage Collection mechanism Chapter 3

21

https://bugs.openjdk.org/browse/JDK-8338315?jql=status in (Resolved%2C Integrated%2C Completed) AND labels %3D gc-g1
https://bell-sw.com/libericajdk-performance-edition


JVM parameter Description

-XX:+UseZGC (since JDK 15) Enables Z Garbage Collector (available since JDK 11)

-XX:+UnlockExperimentalVMOptions
-XX:+UseZGC (since JDK 11 up to 15)

-XX:+UseShenandoahGC Enables Shenandoah Garbage Collector (absent in
Oracle JDK, available in major OpenJDK distributions)

The default garbage collection settings are enough for many applications. If you would like to enhance
some KPIs, try switching to another collector, which default settings are more beneficial to your app,
without delving into the intricacies of GC tuning. For example, if your system is limited to a single CPU,
choose the Serial GC. If more than one CPU is active and sufficient memory is allocated, use the G1 GC.
JDK can enable G1 GC automatically if resources reach certain limits.

The following table summarizes available GCs wih their main characteristics and possible use cases.

Characteristic Serial
GC

Parallel
GC

CMS
GC

G1 GC Z GC Shena
ndoah
GC

Epsilon
GC

Heap size Small Medium
to
Large

Medium
to
Large

Medium
to
Large

Very
large

Very
large

N/A

Latency High Modera
te

Modera
te

Modera
te

Low Low N/A

Throughput Low High Modera
te

High High High N/A

Garbage Collection mechanism Chapter 3

22



Characteristic Serial
GC

Parallel
GC

CMS
GC

G1 GC Z GC Shena
ndoah
GC

Epsilon
GC

Use cases Client
and
Embed
ded
applica
tions in
the
single
process
or
environ
ment

Client,
Embed
ded,
and
Server
applicat
ions in
the
multipr
ocessor
environ
ment
with
focus
on
through
put

Server
applicat
ion in
the
multipr
ocessor
environ
ment
that
can
afford
sharing
the
resourc
es with
GC

Server-
side
applicat
ions in
the
multipr
ocessor
environ
ment
with a
large
heap

Latenc
y-
sensitiv
e
applica
tions,
Applica
tions
with a
very
large
heap
(teraby
tes)

Latenc
y-
sensitiv
e
applica
tions,
Applica
tions
with a
very
large
heap
(teraby
tes)

Perfor
mance
testing,
Short-
lived
applica
tions,
Apps
not
produci
ng
garbag
e

Garbage Collection mechanism Chapter 3

23



4. GC management

Each GC comes with numerous settings that enable the developers to adjust latency, throughput, or
memory.

Common parameters for all GCs

• -XX:+AlwaysPreTouch – By default, the OS allocates physical pages to the JVM on demand as
they are accessed, which can cause latency spikes when pages are first touched. Enabling this
option forces the JVM to pre-touch (write to) every page in the heap at startup, ensuring all memory
is allocated upfront. While this may increase startup time, it is recommended, especially when the
JVM is the primary or sole process running on the OS.

• -XX:+UseStringDeduplication – Scans the heap for duplicate strings and eliminates
redundancy, reducing memory usage at the expense of additional CPU overhead. This feature is
not supported on certain platforms, including ARM32 and PPC32.

• -XX:+DisableExplicitGC – Prevents the JVM from executing System.gc() calls, ensuring that
garbage collection is managed entirely by the JVM’s built-in logic.

• -XX:ParallelGCThreads (ParGC/G1GC Only) - This option specifies the number of threads the
JVM should use for parallel garbage collection.

• -XX:ConcGCThreads (G1GC/Shenandoah GC/ZGC Only) – This option defines the number of
threads to be used for concurrent garbage collection tasks, allowing GC work to occur alongside
application threads. This can help reduce GC pause times, though it may impact application thread
performance due to the additional GC threads running in parallel.

Key GC specific parameters

SerialGC/ParallelGC

• -XX:NewRatio - Controls the size ratio between the young generation (where new objects are
allocated) and the old generation (where long-lived objects are promoted) in the heap. This is an
important parameter that should be adjusted based on the characteristics of your application.

GC management Chapter 4

24



Increase it if the application creates many small, short-lived objects.

• -XX:SurvivorRatio - Controls the ratio between the sizes of the Survivor spaces (S0 and S1) in
the young generation. The survivor spaces hold objects that survive garbage collection in the young
generation before being promoted to the old generation.

• -XX:MaxTenuringThreshold - Sets the maximum number of times an object can survive in the
young generation before being promoted to the old generation. The threshold defines how many
garbage collection cycles an object can remain in the survivor spaces before being moved to the
old generation.

• -XX:+UseAdaptiveSizePolicy - Allows the JVM to automatically adjust the sizes of memory
regions (such as the young generation, old generation, and survivor spaces) based on the
application’s runtime behavior. However, this dynamic resizing incurs additional overhead. If your
application’s behavior is stable over time, it’s often better to manually set the necessary
parameters and disable this option, especially on small boards.

G1 GC

• -XX:InitiatingHeapOccupancyPercent - Sets the threshold (as a percentage of the total heap
size) for when the G1 garbage collector should start a concurrent mark cycle. The JVM will trigger
this cycle once the heap occupancy exceeds the specified percentage.

• -XX:G1NewSizePercent – Sets the percentage of the total heap size to be allocated to the young
generation when using the G1 garbage collector. It controls how much of the heap is initially
reserved for new objects, which are allocated in the young generation.

• -XX:G1HeapWastePercent – Specifies the maximum allowable percentage of the G1 garbage
collector’s heap that can be wasted (i.e., unused or fragmented) before G1 decides to trigger a full
GC to reclaim space.

• -XX:MaxGCPauseMillis - Sets a target for the maximum pause time (in milliseconds) that the
JVM should aim for during garbage collection. The JVM will attempt to adjust garbage collection
behavior to meet this pause time goal, though it may not always be achievable, depending on the
heap size, system resources, and workload.

• -XX:G1HeapRegionSize - Defines the size of each heap region managed by the G1 garbage
collector. The heap is divided into multiple regions, and G1 handles these regions independently for
more efficient garbage collection. By default, the JVM selects the region size based on the total
heap size. For applications with many threads and a large heap, having more regions may be
beneficial. Conversely, on systems with limited cores and applications with fewer threads, reducing
the number of regions might improve performance.

GC management Chapter 4

25



ZGC

ZGC does not have any tunable parameters.

Shenandoah GC

• -XX:ShenandoahGCHeuristics – Selects the garbage collection strategy (heuristics) for the
Shenandoah GC, determining how it balances CPU usage, pause times, and memory reclamation.
Different heuristics optimize for various workloads:

◦ adaptive (default) – Adjusts dynamically based on runtime behavior.

◦ aggressive – Triggers GC more frequently to keep pause times low but increases CPU usage.

◦ static – Uses fixed GC thresholds without adaptive tuning.

◦ compact – Focuses on defragmentation of the heap to improve memory efficiency.

• -XX:+ShenandoahCompact – Enables heap compaction in the Shenandoah garbage collector,
helping to reduce memory fragmentation by relocating objects and freeing up contiguous space.

Example setup

The following examples provide settings for the most commonly used GCs divided into small or large-
scale applications.

Serial GC small board

-XX:+UseSerialGC
-Xmx=512m
-Xms=512m
-XX:NewRatio=2
-XX:SurvivorRatio=8
-XX:MaxTenuringThreshold=10
-XX:+AlwaysPreTouch
-XX:+DisableExplicitGC

GC management Chapter 4

26



G1 GC Small board

-XX:+UseG1GC
-Xmx=512m
-Xms=512m
-XX:InitiatingHeapOccupancyPercent=30
-XX:MaxGCPauseMillis=100
-XX:G1HeapRegionSize=64m
-XX:ParallelGCThreads=1
-XX:ConcGCThreads=1
-XX:+DisableExplicitGC
-XX:+AlwaysPreTouch
-XX:+UseStringDeduplication

Parallel GC server

-Xms384g
-Xmx384g
-XX:+UseParallelGC
-XX:ParallelGCThreads=18
-XX:NewRatio=8
-XX:SurvivorRatio=130
-XX:MaxTenuringThreshold=15
-XX:-UseAdaptiveSizePolicy
-XX:+UseStringDeduplication

G1 GC server

-Xms384g
 -Xmx384g
-XX:+UseG1GC
-XX:MaxGCPauseMillis=200
-XX:G1HeapRegionSize=32m
-XX:InitiatingHeapOccupancyPercent=40
-XX:G1NewSizePercent=20
-XX:SurvivorRatio=6
-XX:ParallelGCThreads=18
-XX:ConcGCThreads=8
-XX:G1HeapWastePercent=5

GC management Chapter 4

27



-XX:+UseStringDeduplication

GC management Chapter 4

28



5. Logging

Before adjusting garbage collector settings, learn to understand its behavior. GC logs are text files that
provide exhaustive information about GC work: total GC time, memory reclamation and allocation, etc.

For JDK8 and below, the following options control GC logging:

JVM parameter Description

-XX:PrintGC Enables basic logging

-XX:+PrintGCDetails Activates detailed logging

-XX:NumberOfGCLogFiles Sets the limit for the number of GC logs

-XX:+UseGCLogFileRotati
on

Renames, archives, compresses or deletes log files when they are
large and new logs are written directly to a new log file.

-XX:GCLogFileSize Sets a maximum size of each Garbage Collector (GC) log.

JDK9 expands the unified logging framework for GC logging (JEP 271) so the logging option above is
superseded with the -Xlog parameter. To learn more about the new logging syntax, run:

-Xlog:help

Logging Chapter 5

29

https://openjdk.org/jeps/271[JEP 271]


6. How to handle
OutOfMemoryError

JVM parameter Description

-XX:+HeapDumpOnOutOfMemoryError Dumps heap into a file in the case of
OutOfMemoryError

-XX:HeapDumpPath Specifies the path for the file with heap data

-XX:OnOutOfMemoryError="< cmd args
>;< cmd args >"

Specifies actions to be performed in the case of
OutOfMemoryError

OutOfMemoryError leads to the application crash and is hard to troubleshoot. The above parameters
provide the developers with a lot of information related to the error, so it is easier to detect memory
leaks.

How to handle OutOfMemoryError Chapter 6

30



7. Working with Strings

JVM parameter Description

-XX:+UseStringDeduplication Removes duplicate strings during GC (with G1 GC only)

-XX:+UseStringCache Caches commonly allocated strings in the String pool

-XX:+UseCompressedStrings Uses a byte[] for Strings that can be represented as pure ASCII

-XX:+OptimizeStringConcat Optimizes String concatenation operations when possible

java.lang.String is the most commonly used Java class. No wonder that Strings take up a
significant part of the application memory. We can release the resources by removing duplicate strings
and optimizing the String operations with the above parameters.

Working with Strings Chapter 7

31



8. Other useful parameters

JVM parameter Description

-XX:LargePageHeapSizeThreshold Uses large pages if max. heap is at least as big
as the specified value

-XX:LargePageSizeInBytes Sets the large page size for the heap

-XX:+UseCompressedOops Enables the use of compressed pointers (32-bit
instead of 64-bit) for heaps less than 32 GB

-XX:+TieredCompilation Disables intermediate compilation tiers

-XX:TieredStopAtLevel=1 Uses only the C1 compiler

-XX:ThreadStackSize Sets the size of thread stack space

The -XX:LargePageHeapSizeThreshold and -XX:LargePageSizeInBytes flags enable the
developers to operate with large pages (a technique to reduce the pressure on the processors
Translation-Lookaside Buffer caches) and make better use of virtual hardware resources.

The -XX:+TieredCompilation and -XX:TieredStopAtLevel=1 can be used with Serial GC to turn
off the optimizing compiler and reduce memory footprint in some cases. Use them when memory
consumption is the only important KPI.

Memory to thread stacks is allocated outside the heap, so it is not affected by heap size parameters.
The -XX:ThreadStackSize flag enables the developers to reduce the size of thread stacks.

Other useful parameters Chapter 8

32



Appendix A: GC support in
different environments

Standard JDK

The following tables list supported GCs depending on the JDK version, OS, and CPU type.

Mark Legend

+ supported

- not supported

E supported as experimental feature: requires
-XX:+UnlockExperimentalVMOptions vm option to be unlocked

N build is not available

jdk6 CMS G1 Parallel Serial

Linux-x86 + + + +

Linux-x86_64 + + + +

Windows-x86 + + + +

Windows-x86_64 + + + +

GC support in different environments Chapter A

33



jdk7 CMS G1 Parallel Serial

Linux-x86 + + + +

Linux-x86_64 + + + +

macOS-x86_64 + + + +

Windows-x86 + + + +

Windows-x86_64 + + + +

jdk8 CMS Epsilon G1 Parallel Serial Shenandoah Z

Linux-arm + - - + + - -

Linux-aarch64 + - + + + - -

Linux-ppc32 + - - + + - -

Linux-ppc64le + - + + + - -

Linux-x86 + - + + + - -

Linux-x86_64 + - + + + - -

macOS-aarch64 + - + + + - -

macOS-x86_64 + - + + + - -

Solaris-sparcv9 + - + + + - -

Solaris-x86_64 + - + + + - -

GC support in different environments Chapter A

34



jdk8 CMS Epsilon G1 Parallel Serial Shenandoah Z

Windows-x86 + - + + + - -

Windowx-x86_64 + - + + + - -

jdk11 CMS Epsilon G1 Parallel Serial Shenandoah Z

Linux-arm + E + + + - -

Linux-aarch64 + E + + + + -

Linux-ppc64le + E + + + - -

Linux-s390 + E + + + - -

Linux-x86 + E + + + + -

Linux-x86_64 + E + + + + E

macOS-aarch64 + E + + + + -

macOS-x86_64 + E + + + + -

Solaris-sparcv9 + E + + + - -

Solaris-x86_64 + E + + + + -

Windows-aarch64 + E + + + + -

Windows-x86 + E + + + + -

Windowx-x86_64 + E + + + + -

GC support in different environments Chapter A

35



jdk17 CMS Epsilon G1 Parallel Serial Shenandoah Z

Linux-
arm

- E + + + - -

Linux-
aarch6
4

- E + + + + +

Linux-
ppc64le

- E + + + + +

Linux-
s390

- E + + + - -

Linux-
x86

- E + + + + -

Linux-
x86_64

- E + + + + +

macOS-
aarch6
4

- E + + + + +

macOS-
x86_64

- E + + + + +

Windo
ws-
aarch6
4

- E + + + + +

Windo
ws-x86

- E + + + + -

GC support in different environments Chapter A

36



jdk17 CMS Epsilon G1 Parallel Serial Shenandoah Z

Windo
wx-
x86_64

- E + + + + + 1

jdk21 CMS Epsilon G1 Parallel Serial Shenandoah Z

Linux-
arm

- E + + + - -

Linux-
aarch6
4

- E + + + + +

Linux-
ppc64le

- E + + + + +

Linux-
riscv

- E + + + - -

Linux-
s390

- E + + + - -

Linux-
x86

- E + + + + -

Linux-
x86_64

- E + + + + +

macOS-
aarch6
4

- E + + + + +

macOS-
x86_64

- E + + + + +

GC support in different environments Chapter A

37



jdk21 CMS Epsilon G1 Parallel Serial Shenandoah Z

Windo
ws-
aarch6
4

- E + + + + +

Windo
ws-x86

- E + + + + -

Windo
wx-
x86_64

- E + + + + + 1

JDK Performance Edition

The following tables list supported GCs depending on the JDK version, OS, and CPU type.

jdk8perf CMS Epsilo
n

G1 Parall
el

Serial Shenandoah Z

Linux-arm - E + + + - -

Linux-
aarch64

- E + + + + +

Linux-ppc32 N N N N N N N

Linux-ppc64le - E + + + + +

Linux-x86 - E + + + + -

Linux-x86_64 - E + + + + +

GC support in different environments Chapter A

38



jdk8perf CMS Epsilo
n

G1 Parall
el

Serial Shenandoah Z

macOS-
aarch64

- E + + + + +

macOS-
x86_64

- E + + + + +

Solaris-
sparcv9

N N N N N N N

Solaris-
x86_64

N N N N N N N

Windows-x86 - E + + + + -

Windowx-
x86_64

- E + + + + + 1

jdk11perf CMS Epsilo
n

G1 Parall
el

Serial Shenandoah Z

Linux-arm - E + + + - -

Linux-
aarch64

- E + + + + +

Linux-ppc64le - E + + + + +

Linux-s390 - E + + + - -

Linux-x86 - E + + + + -

Linux-x86_64 - E + + + + +

GC support in different environments Chapter A

39



jdk11perf CMS Epsilo
n

G1 Parall
el

Serial Shenandoah Z

macOS-
aarch64

- E + + + + +

macOS-
x86_64

- E + + + + +

Solaris-
sparcv9

N N N N N N N

Solaris-
x86_64

N N N N N N N

Windows-
aarch64

- E + + + + +

Windows-x86 - E + + + + -

Windowx-
x86_64

- E + + + + + 1

jdk17perf CMS Epsilo
n

G1 Parall
el

Serial Shenandoah Z

Linux-arm - E + + + - -

Linux-
aarch64

- E + + + + +

Linux-ppc64le - E + + + + +

Linux-s390 - E + + + - -

GC support in different environments Chapter A

40



jdk17perf CMS Epsilo
n

G1 Parall
el

Serial Shenandoah Z

Linux-x86 - E + + + + -

Linux-x86_64 - E + + + + +

macOS-
aarch64

- E + + + + +

macOS-
x86_64

- E + + + + +

Windows-
aarch64

- E + + + + +

Windows-x86 - E + + + + -

Windowx-
x86_64

- E + + + + + 1

1. Supported on Windows version 10 or later (2019 or later for server version).

GC support in different environments Chapter A

41



Guide to JVM memory
configuration options

Liberica JDK


	Liberica JDK: Guide to JVM memory configuration options
	Contents
	1. Introduction
	2. Heap and RAM size options
	Heap size options
	Options for limiting total RAM consumption

	3. Garbage Collection mechanism
	Overview
	How does Garbage Collection work
	Advantages of automatic Garbage Collection
	Disadvantages of automatic Garbage Collection
	Manual invocation of GC

	Types of Garbage Collectors in JDK
	Serial Garbage Collector
	Parallel Garbage Collector
	Concurrent Mark Sweep Garbage Collector
	G1 Garbage Collector
	Z Garbage Collector
	Shenandoah Garbage Collector
	Epsilon Garbage Collector

	Selecting GC
	Garbage Collection and JDK versions
	Parameters to select GC


	4. GC management
	Common parameters for all GCs
	Key GC specific parameters
	SerialGC/ParallelGC
	G1 GC
	ZGC
	Shenandoah GC

	Example setup
	Serial GC small board
	G1 GC Small board
	Parallel GC server
	G1 GC server


	5. Logging
	6. How to handle OutOfMemoryError
	7. Working with Strings
	8. Other useful parameters
	Appendix A: GC support in different environments
	Standard JDK
	JDK Performance Edition


