
JDK Flight Recorder
How to use with Mission Control

Liberica JDK
Revision 1.0
October 17, 2023



Copyright © BellSoft Corporation 2018-2025.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com


Contents

1. Introduction  5

2. What is Java Flight Recorder?  6

3. What is Mission Control?  7

4. How JFR + MC differ from other profiling tools  8

5. How to start using Java Flight Recorder  9

6. A brief overview of Mission Control reports  10

Method profiling  10

Memory  11

Lock Instances  11

File I/O and Socket I/O  12

Threads  14



Exceptions  15

Garbage Collections  15

VM Operations  16

Configuration and environment  16

7. Continuous flight recording  19



1. Introduction

JDK Flight Recorder, also Java Flight Recorder (JFR), is a powerful feature of Hotspot JVM. JFR takes its
origin from JRockit JVM; later, it was ported to Hotspot JVM and introduced in Oracle Java 7. At the time
of Java 9, JFR was fully open source, and now it is an integral part of OpenJDK. This document will
highlight key features of Java Flight Recorder and how it can be useful for Java developers.

Introduction Chapter 1

5

https://en.wikipedia.org/wiki/JRockit


2. What is Java Flight Recorder?

Java Flight Recorder is a performance/diagnostic tool that can be a huge time saver for Java engineers
while troubleshooting applications at runtime. As the name suggests, Java Flight Recorder collects
various kinds of events from JVM runtime and records them in the form of binary log files (further
referred to as recordings). In Liberica JDK 11, JFR is capable of tracing a few hundred types of events,
creating a comprehensive JVM runtime picture. Recordings produced by JFR are self-contained files
that can be further analyzed in Mission Control.

JDK Flight Recorder is integrated into Liberica JDK 8 and later. The Liberica JDK binaries are available in
the Liberica JDK Download Center.

What is Java Flight Recorder? Chapter 2

6

https://bell-sw.com/pages/downloads/#jdk-17-lts


3. What is Mission Control?

Mission Control is essentially a graphical front end working with JFR recordings (binary log files)
produced by Java Flight Recorder. Mission Control is also open-source. You can get Mission Control
binaries in the Mission Control Download Center.

JFR recordings are straightforward, each one is a plain collection of events. For them to make sense,
this data needs to be post-processed. Mission Control offers several built-in reports outlining various
aspects of JVM runtime (e.g., code execution, object allocation, garbage collection, and more). Besides
general reports, Mission Control has a number of rule-based heuristics for detecting typical problems of
Java applications. Finally, you can use a generic event browser and customizable filters to configure
reports tailored for your task.

What is Mission Control? Chapter 3

7

https://bell-sw.com/liberica-mission-control/#downloads


4. How JFR + MC differ from other
profiling tools

To a certain extent, features of JFR + Mission Control compete with those of profilers, but comparing
them to traditional profilers is not very fair.

JFR is a tool of its own kind. It is a feature of JDK, so other Java profilers besides Mission Control can
benefit from JFR capabilities, too.

For certain profiling tasks (e.g., identifying code hot spots or object allocation profiling), JFR + Mission
Control is similar to a typical Java profiler (Visual VM, JProfiler, YourKit profiler). These are good open-
source Java profilers that you can use to avoid paying for commercial tools.

Some features essential for profilers are not covered by JFR. For instance, if you want to trace SQL
statements sent to the database, JFR is not your tool.

You can send application-specific events to JFR. This is a compelling way to collect telemetry peculiar
to your application, though it requires upfront work to place event generation in application logic.

Finally, some kinds of JVM telemetry are available only via JFR.

How JFR + MC differ from other profiling tools Chapter 4

8



5. How to start using Java Flight
Recorder

JFR is an integral part of OpenJDK now. You do not need to download anything besides JDK or
configure JVM in any special way to start using it.

JFR workflow is as follows:

• Start a flight recording session with a particular configuration.

• Once the session is active for some time, dump recording to a file.

• Stop the session after the dump (this step is optional, you can leave it active if you plan to record
more information later).

There are three ways to start a flight recording session:

• Using the jcmd CLI tool included in JDK, start/stop/dump JFR sessions. You need access to the
command-line on the server running your Java application to use jcmd.

• Using Mission Control application, you can do the same for both locally running and remote
processes (you need a configured JMX to connect to JVM remotely).

• It is also possible to activate a JFR session on the application startup via JVM command-line
options (this is very useful if you want to profile applications during startup).

Starting a flight recording session also requires a configuration (called a profile). The profile defines
what kind of events will be collected during the session. It also determines per probe configuration
(frequency for method sampling, duration threshold for I/O events, etc.).

There are two built-in profiles, "default" and "profiling." You can also configure and use custom profiles
via Mission Control UI.

Once you have a JFR recording file, you need Mission Control to open it.

How to start using Java Flight Recorder Chapter 5

9



6. A brief overview of Mission
Control reports

Mission Control has numerous features and a fairly steep learning curve. Below is a brief description of
key reports available in Mission Control.

Method profiling

JFR can periodically capture stack traces for running threads in JVM. This technique is known as
sampling profiling and available in all Java profilers. Statistical analysis of a large corpus of stack
traces gives an excellent picture of where the application spends most of the time down to method
name or even line number. This report provides useful visualization for this subset of data collected by
JFR.

This method is typically used in cases where the application is CPU bound. Sampling helps to identify
code that is inefficient or can be optimized for better performance.

A brief overview of Mission Control reports Chapter 6

10



Memory

This report outlines the memory usage statistics of your Java application. It combines multiple data
points, with the most important of them being object allocation samples.

If enabled, JFR records samples of new object allocation events, including allocated classes, size of
object, and stack trace to the point of allocation. Statistical analysis of these samples can reveal a lot
about your code.

The "Memory" report shows top classes of objects being allocated. Information on actual allocated size,
including stack trace to the point of allocation, is also available.

This report is most helpful if you want to reduce garbage collector pressure or optimize memory usage.
Memory profiling is extremely valuable when it quickly identifies the "littering" code in your application
and provides ideas for optimization.

Lock Instances

Contentions and deadlocks is another class of Java problems hard to approach without a good tool.
JFR collects events of thread blocking on synchronized sections and other concurrency primitives that

A brief overview of Mission Control reports Chapter 6

11



can be useful during the investigation of Java concurrency problems.

"Lock Instances" report shows you aggregated statistics for these events. "Threads" is another report
helpful in tracking down concurrency issues.

A built-in "Profiling" configuration has a threshold on the duration for such events. Keep in mind that
you may need to lower it to get a more detailed picture.

The cost of inter-thread contention becomes a harsh reality for high parallel code running on dozens of
cores. Java ships with a few concurrency primitives, including lock-free ones. The contention report
helps understand the cost of multithreading in your application and possibly highlights bottlenecks
where switching to more elaborate locking is most beneficial.

File I/O and Socket I/O

A brief overview of Mission Control reports Chapter 6

12



Blocking file and socket I/O operations are also traced by JFR. These reports show aggregated
statistics built from file and socket I/O events, respectively.

A brief overview of Mission Control reports Chapter 6

13



You can see which files your application has been reading and for how long or at which remote
endpoints it has exchanged data.

There is a caveat, though. When using JFR for the first time, you are likely to find both of these reports
to be empty or almost empty. The reason is the 10 ms threshold used by default for these kinds of
events. If you want to see a full I/O picture, set this threshold to 0 when starting a flight recording
session.

This report is very good at catching "unexpected" I/O events buried deep inside the layers of libraries
and frameworks.

Threads

In this report, you can see various events (contention related, I/O associated, Java thread state
changes) put into a unified timeline. Here, you can see the interaction of threads in an intuitive visual
way. The ability to zoom into the millisecond level of precision is helpful, too.

A brief overview of Mission Control reports Chapter 6

14



Exceptions

Every Java application produces a handful of exceptions at runtime. Some of them end up in log files,
but many are suppressed for one reason or another. Silently swallowed exceptions sometimes lead to
many hours wasted during the incident investigation afterward.

JFR sees all exceptions (whether they were suppressed or not). There are two kinds of related events.
JFR records the total count of exceptions produced by runtime. This metric helps to identify exception
misuse. JFR can also record every single exception created, including the stack trace, although you
need to tweak the flight recording session’s configuration to get this level of detail.

Garbage Collections

GC troubleshooting typically involves digging through GC logs. JFR collects detailed information
concerning GC events, and this report visualizes this data. Almost any metric of GC present in JVM is
available here.

If you need to tune GC or troubleshoot abnormal GC pauses, this is a report to start with.

A brief overview of Mission Control reports Chapter 6

15



VM Operations

HotSpot has a concept of VM operations ranging in types. But the critical point is that all of them
require the Stop-the-World pause. With some JVM options, you can enable logging of VM operation or
use JFR and this handy report.

VM operations are often mistaken for GC pauses (which is just one type of VM operations). Developers
tend to blame Stop-the-World on garbage collectors. This report is your first stop if the application is
experiencing Stop-the-World pauses.

Configuration and environment

A brief overview of Mission Control reports Chapter 6

16



A brief overview of Mission Control reports Chapter 6

17



You can send JFR files for analysis to an expert in the JVM domain. Files include JVM configuration,
hardware configuration, and even a list of other processes running on a server and competing for
resources without application.

A brief overview of Mission Control reports Chapter 6

18



7. Continuous flight recording

JFR + Mission Control can be used as a free and capable Java profiler, but using them in continuous
mode can bring even more value.

To get the full benefit from continuous flight recording, you need to

• configure your JVM to be accessible via JMX;

• add JVM command-line arguments to activate Flight Recorder on startup.

A minimal command to start flight recording session on startup is the following:

-XX:StartFlightRecording=name=background,maxsize=100m

An important option is maxsize that limits how many events are retained in memory.

Now, you have JFR silently collecting events in the background. As long as the application runs fine,
you can forget about JFR being active. The default JFR profile adds very little overhead.

At the same time, you can quickly connect to JVM via Mission Control and dump accumulated events
from a problematic server, which is especially useful for tracking down problems reproducible only on
live production.

One can argue that instead of pulling data dumps from individual VMs, it is better to have a centralized
monitoring system where you can access diagnostics from any server. In theory, that will be perfect,
but arranging quality centralized monitoring is extremely challenging. Central monitoring solutions
have to compromise on the level of details.

Continuous flight recording and the ability to pull event dumps on demand are complementary to
central logging and general monitoring solutions, as you can get very detailed telemetry from JVM.

Continuous flight recording Chapter 7

19



How to use with Mission
Control

JDK Flight Recorder


	JDK Flight Recorder: How to use with Mission Control
	Contents
	1. Introduction
	2. What is Java Flight Recorder?
	3. What is Mission Control?
	4. How JFR + MC differ from other profiling tools
	5. How to start using Java Flight Recorder
	6. A brief overview of Mission Control reports
	Method profiling
	Memory
	Lock Instances
	File I/O and Socket I/O
	Threads
	Exceptions
	Garbage Collections
	VM Operations
	Configuration and environment

	7. Continuous flight recording

