JDK Flight Recorder
How to use with Mission Control

Liberica JDK

”
r}j‘f" Revision 1.0
(g October 17, 2023 beIISOft

Copyright © BellSoft Corporation 2018-2025.

BellSoft software contains open source software. Additional information about third party code is
available at https:/bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and Open]DK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com

Contents

1. Introduction

2. What is Java Flight Recorder?

3. What is Mission Control?

4. How JFR + MC differ from other profiling tools

5. How to start using Java Flight Recorder

6. A brief overview of Mission Control reports

10

Method profiling
Memory

Lock Instances

File I/0 and Socket I/O

Threads

10

11

11

12

14

Exceptions
Garbage Collections
VM Operations

Configuration and environment

/. Continuous flight recording

15

15

16

16

19

Introduction Chapter 1

1. Introduction

JDK Flight Recorder, also Java Flight Recorder (JFR), is a powerful feature of Hotspot JVM. JFR takes its
origin from |Rockit |VM; later, it was ported to Hotspot JVM and introduced in Oracle Java 7. At the time
of Java 9, JFR was fully open source, and now it is an integral part of Open]DK. This document will
highlight key features of Java Flight Recorder and how it can be useful for Java developers.

bel//lsoft 5

https://en.wikipedia.org/wiki/JRockit

What is Java Flight Recorder? Chapter 2

2. What is Java Flight Recorder?

Java Flight Recorder is a performance/diagnostic tool that can be a huge time saver for Java engineers
while troubleshooting applications at runtime. As the name suggests, Java Flight Recorder collects
various kinds of events from JVM runtime and records them in the form of binary log files (further
referred to as recordings). In Liberica JDK 11, JFR is capable of tracing a few hundred types of events,
creating a comprehensive VM runtime picture. Recordings produced by JFR are self-contained files
that can be further analyzed in Mission Control.

JDK Flight Recorder is integrated into Liberica JDK 8 and later. The Liberica JDK binaries are available in
the Liberica DK Download Center.

bel//lsoft 6

https://bell-sw.com/pages/downloads/#jdk-17-lts

What is Mission Control? Chapter 3

3. What is Mission Control?

Mission Control is essentially a graphical front end working with JFR recordings (binary log files)
produced by Java Flight Recorder. Mission Control is also open-source. You can get Mission Control
binaries in the Mission Control Download Center.

JFR recordings are straightforward, each one is a plain collection of events. For them to make sense,
this data needs to be post-processed. Mission Control offers several built-in reports outlining various
aspects of JVM runtime (e.g., code execution, object allocation, garbage collection, and more). Besides
general reports, Mission Control has a number of rule-based heuristics for detecting typical problems of
Java applications. Finally, you can use a generic event browser and customizable filters to configure
reports tailored for your task.

bel//lsoft 7

https://bell-sw.com/liberica-mission-control/#downloads

How JFR + MC differ from other profiling tools Chapter 4

4. How JFR + MC differ from other
profiling tools

To a certain extent, features of JFR + Mission Control compete with those of profilers, but comparing
them to traditional profilers is not very fair.

JFR is a tool of its own kind. It is a feature of JDK, so other Java profilers besides Mission Control can
benefit from JFR capabilities, too.

For certain profiling tasks (e.g., identifying code hot spots or object allocation profiling), JFR + Mission
Control is similar to a typical Java profiler (Visual VM, JProfiler, YourKit profiler). These are good open-
source Java profilers that you can use to avoid paying for commercial tools.

Some features essential for profilers are not covered by JFR. For instance, if you want to trace SQL
statements sent to the database, JFR is not your tool.

You can send application-specific events to JFR. This is a compelling way to collect telemetry peculiar
to your application, though it requires upfront work to place event generation in application logic.

Finally, some kinds of JVM telemetry are available only via JFR.

bel//lsoft 8

How to start using Java Flight Recorder Chapter 5

5. How to start using Java Flight
Recorder

JFR is an integral part of Open]DK now. You do not need to download anything besides JDK or
configure JVM in any special way to start using it.

JFR workflow is as follows:
» Start a flight recording session with a particular configuration.
e Once the session is active for some time, dump recording to a file.

e Stop the session after the dump (this step is optional, you can leave it active if you plan to record
more information later).

There are three ways to start a flight recording session:

e Using the jemd CLI tool included in JDK, start/stop/dump JFR sessions. You need access to the
command-line on the server running your Java application to use jemd.

e Using Mission Control application, you can do the same for both locally running and remote
processes (you need a configured JMX to connect to JVM remotely).

e It is also possible to activate a JFR session on the application startup via JVM command-line
options (this is very useful if you want to profile applications during startup).

Starting a flight recording session also requires a configuration (called a profile). The profile defines
what kind of events will be collected during the session. It also determines per probe configuration
(frequency for method sampling, duration threshold for I/O events, etc.).

There are two built-in profiles, "default" and "profiling." You can also configure and use custom profiles
via Mission Control Ul.

Once you have a JFR recording file, you need Mission Control to open it.

bel//lsoft 9

A brief overview of Mission Control reports Chapter 6

6. A brief overview of Mission
Control reports

Mission Control has numerous features and a fairly steep learning curve. Below is a brief description of
key reports available in Mission Control.

Method profiling

JFR can periodically capture stack traces for running threads in JVM. This technique is known as
sampling profiling and available in all Java profilers. Statistical analysis of a large corpus of stack
traces gives an excellent picture of where the application spends most of the time down to method

name or even line number. This report provides useful visualization for this subset of data collected by
JFR.

@ Method Profiling 0 =

[1: Threads Histogram Selection '] Aspect: [Selected events (17,851 events of 29 types) v] [] Show concurrent: Contained Same threads

Top Package : Count

| »

java.util.zip

java.io

javalang

jdk.jfrinternal
com.sunjmx.remote.internal

m

= o R

java.util

Top Class Count i

39
28 g

14

C] java.io.DatalnputStream
® java.utilzipInflater

(C] java.util.zip.InflaterInputStream
c] java.lang.String

(c] jdkjfrinternal.EventWriter
® java.lang.Stringlatinl

= Stack Trace ||@5@ v~ a
~

Stack Trace Count

- 1 byte java.io.DatalnputStream.readByte():270 E]
> 1L int java.util.zipInflater.inflate(byte[], int, int):385 18
> t int java.util.zip.Inflater.inflate(byte[], int, int):406 10
> 1 int java.util.zipInflaterinputStream.read():123

> % char java.lang.5tring.charAt(int):695

> t int java.util.zipInflaterlnputStream.read(byte(], int, int):153
> 1L void java.util.zipInflaterinputStream fill():243

> A void jdkjfr.internal.EventWriter.putStackTrace():171

- 1 void jdk.jfr.internal EventWriter. putStackTrace()173

m

[S ST

This method is typically used in cases where the application is CPU bound. Sampling helps to identify
code that is inefficient or can be optimized for better performance.

bel//lsoft 10

A brief overview of Mission Control reports Chapter 6

Memory

This report outlines the memory usage statistics of your Java application. It combines multiple data
points, with the most important of them being object allocation samples.

If enabled, JFR records samples of new object allocation events, including allocated classes, size of
object, and stack trace to the point of allocation. Statistical analysis of these samples can reveal a lot
about your code.

o4 Memory 0l =
|1: Threads Histogram Selection v] Aspect: [Se\ected events (17,851 events of 29 types) v] || Show concurrent: Contained Same threads Time Range:
Class Max Live Count Max Live Size Live Size Increase TotaI'AIIocation Il
c] org.gridkit.jvmtoolstacktrace.StackFrame[] 715 MiB =
@ charll 143 MiB
@ bytel 9,62 MiB
@ javalang.Object(] 5.63 MiB
[TR SR U SR 1Y JU L S T 487 haio S
ﬂGarbageCollection -
20 MiB .Total Allocation I
16 MiB [T] [Used Heap
12 MiB Ol Heap Space: Committed &
B MiB [y | Heap Space: Reserved Size
4 MiB r [. Used Size i
Allocation | | | I A [C] W Total Size
08/04/2020 19:55:15 19:55:30 19:55:45 19:56:00 19:56:15 |;| o Live SiZ:r . X
= StackTracel RAdR |‘@]"Q T o=
Stack Trace Count |41
i 1 void org.gridkitjvmtool.stacktrace.StackTraceCodecSStack TraceReaderV2.readStackTrace():640 _ 242 E
1+ L String org.gridkitjvmtool.stacktrace. StackFrame toString(CharSequence):281 . 46 |
[t byte(] java.lang.StringUTF16.compress(char(], int, int):160 I 26
i 1 ObjectStreamClass java.io.ObjectStreamClass.lockup(Class, boolean):338 I 21
1 1 StackFrame org.gridkit.jvmtool.stacktrace. Stack TraceCodecSStackTraceReaderV2 readStackTraceElement():658 I 11
i L void org.gridkitjvmtool stacktrace.StackTraceCodecSStack TraceReaderV2.readStackTrace():645 I 10
1 L void java.io.ObjectOutputStream. defaultWriteFields(Object, ObjectStreamClass)i1542 I 9
i+ L void org.gridkitjvmtool stacktrace.StackTraceCodecSStackTraceReaderV2. read Counters():620 I 9
» 1 HashMapS$Mode java.util. LinkedHashMap.newNode(int, Object, Object, HashMapSNode):256 I 8 |

The "Memory" report shows top classes of objects being allocated. Information on actual allocated size,
including stack trace to the point of allocation, is also available.

This report is most helpful if you want to reduce garbage collector pressure or optimize memory usage.
Memory profiling is extremely valuable when it quickly identifies the "littering" code in your application
and provides ideas for optimization.

Lock Instances

Contentions and deadlocks is another class of Java problems hard to approach without a good tool.
JFR collects events of thread blocking on synchronized sections and other concurrency primitives that

bel//lsoft 11

A brief overview of Mission Control reports Chapter 6
can be useful during the investigation of Java concurrency problems.
&* Lock Instances (V) | =
[< Mo Selection v] Aspect: [< Mo Selection> - [Show concurrent: Contained Same threads
Menitor Class Total BI(‘Jcked Time Distinct Threads Count
[C] jdk.jfr.internal.PlatformRecorder 37.160 ms 1 1
Gimp 203868 s 2 [
Monitor Address Total BI(‘Jcked Time Distinct Threads Count
7 0x50545C08 37160 ms 1 1
7l 0x51824188 203868 ps : I
Thread Total BI(‘Jcked Time Count
@ JFR Perlodic Tasks 37160 ms [l 1
& RMI TCP Connection(12)-192.168.100.1 100211 p= D 5
& RMI TCP Connection(13)-192.168.100.1 13057 us [2

= Stack Tra cel

RAK @O ~ - 0]

Stack Trace

> 1. boolean com.sun jmx.remote.internal.ServerCommunicatorAdmin.reglncoming():72

Count

I

> L void jdkjfrinternal PlatformRecorder.periodic Task():435 .

"Lock Instances" report shows you aggregated statistics for these events. "Threads" is another report
helpful in tracking down concurrency issues.

A built-in "Profiling" configuration has a threshold on the duration for such events. Keep in mind that
you may need to lower it to get a more detailed picture.

The cost of inter-thread contention becomes a harsh reality for high parallel code running on dozens of
cores. Java ships with a few concurrency primitives, including lock-free ones. The contention report
helps understand the cost of multithreading in your application and possibly highlights bottlenecks
where switching to more elaborate locking is most beneficial.

File I/O and Socket I/O

bel//lsoft 12

A brief overview of Mission Control reports

Chapter 6

4 Filel/O @ =
[c_No Selection> v] Aspect: [cNo Selection> v] Show concurrent: || Contained [/]Samethreads Time Range:
Path Total /O Time Count Read Count Write Count Bytes Read Bytes Written =
null 19.954 ¢ 8 2 4] 6B 581B H
target\optaplanner.log 63014 ms [N 2451 2451 820KiB
CALABDIR.JUG\optaplanner\tar... 62.228 ms - G641 302 339 148 KiB 148 KiB
local\data\machinereassignment... 49.409 ms I 302 302 148 KiB
CALABDIR.JUG\optaplanner\tar... 19.551 ms I 192 a4 108 405Kie 405Kie
CALABDIRJUG\optaplanner\tar... 15199 ms I 149 65 a4 311KiB 311KiB i
h
Timeline Durations| Size| Event Log|
File Read 128KiB .I
File Writs 256 K‘4 l
05/09/2019 20:39:00 20:39:05 20:39:10 20:39:15 20:39:20 20:39:25
= StackTrace} KAR] |@"® v -4
Stack Trace Count
[t void java.io FileOutputStream.write(byte[], int, int):95 _ 3089
[t void java.ioc.RandomAccessFilewrite(byte[], int, int):168 -]'96
[t int java.io.RandomAccessFile.read(bytel], int, int):110 -
I t void java.io.RandomAccessFilewrite(int):130 4E'|
[t int java.io.FilelnputStream.read(byte[], int, int):109 2|
4 Socket /0 LA =
[{No Selection> v] Aspect: [(Na Selection> v] Show concurrent: | | Contained || Same threads Time Range:
Remote Address Tvotal /O Time Count Read Count Write Count Eytes Read Bytes Written
192.168.100.1 »nxs [1,040 1136 106 Kie 271 MiB
Remote Port Tvotal /O Time Count Read Count Write Count Eytes Read Bytes Written
53,055 sozs [N 123 566 662 616 KB 1.24 MiB
53,054 292488 ms [N 348 474 474 442 KiB 1.46 MiB
Timeline Durations| S\ze| Event Log|
4 KiB
Socket Read
Socket Write 64 KiB
05/09/2019 20:39:00 20:39:05 20:39:10 20:39:15 20:39:20 20:39:25
= StackTracel RAR ||@'® o=
Stack Trace Count
b X void java.net. SocketOutputStream.socketWrite(byte[], int, int):68 _ 1136
p X intjava.net.SocketinputStream.read(byte[], int, int, int):71 _

Blocking file and socket 1/0O operations are also traced by JFR. These reports show aggregated
statistics built from file and socket I/O events, respectively.

be/lsoft 13

A brief overview of Mission Control reports Chapter 6

You can see which files your application has been reading and for how long or at which remote
endpoints it has exchanged data.

There is a caveat, though. When using JFR for the first time, you are likely to find both of these reports
to be empty or almost empty. The reason is the 10 ms threshold used by default for these kinds of

events. If you want to see a full I/O picture, set this threshold to 0 when starting a flight recording
session.

This report is very good at catching "unexpected" I/O events buried deep inside the layers of libraries
and frameworks.

Threads

In this report, you can see various events (contention related, I/O associated, Java thread state
changes) put into a unified timeline. Here, you can see the interaction of threads in an intuitive visual
way. The ability to zoom into the millisecond level of precision is helpful, too.

= Threads 2
[<No Selection= v]Aspect: [<No Selection= v]DShow concurrent: Contained Same threads Time Range:
=

Thread Thread Gra *

»@ AWT-Windows system 1

2 Attach Listener system

@ C2 CompilerThread0 system

#® Common-Cleaner Innocuous’|

@ Finalizer system

OptaPool-268-BenchmarkThread-1 / Java Latencies Lane
At 05/09,/2019, 20:39:03 388084 - 388112

M File Write: 28.160 ps
Event Thread: OptaPool-268-BenchmarkThread-1

=2 JFR Periodic Tasks RMI Runtin
2 JFR Recorder Thread system

@ JFR Recording Sche... RMI Runtin
2 IMX server connecti.. RMIRuntin

oo o
2 OptaPool-268-Benc.. main
+© RMI Scheduler(0) system At -co -05/08/20189, 20:39:26:
& RMI TCP Accept-0 system) —— 203900 Il Thread Lifespan of OptaPool-268-BenchmarkThread-1: N/A
«<[om r
EStackTracel RHd R||@;® ¥ = 0
Stack Trace Count Il
X void javalang.Objectwait(long):-1 - 3454
» T void java.io.FileOutputStream.write(byte[], int, int):95 - 3089
» L void java.net.SocketOutputStream.socketWrite(byte[], int, int):68 . 1136 =
3 t int java.net.SocketlnputStream.read(byte(], int, int, int):71 .040
[t void java.io.RandomAccessFilewrite(byte[], int, int):168 .6
» L intjava.ic.RandomAccessFileread(byte[], int, int):110 51
» X void java.io.RandomAccessFilewrite(int):130 4U|
» X boolean com.sun jmi.remote.internal ServerCommunicatorAdmin.reqlncoming():72 '."|
» T void jdk.internal.misc.Unsafe.park(boclean, leng):-1 5| &

bel//lsoft 14

A brief overview of Mission Control reports Chapter 6

Exceptions

Every Java application produces a handful of exceptions at runtime. Some of them end up in log files,
but many are suppressed for one reason or another. Silently swallowed exceptions sometimes lead to
many hours wasted during the incident investigation afterward.

J1 Exceptions O A=
[<NoSelection> v] Aspect: [<NoSeIection> v] [] Show concurrent: Contained Same threads Time Range:
Class = Count it
© java.utilNoSuchElementException 1 i
(3 javalang.Throwable 2,451 i
Message = Count ol
nul S st i
org.optaplanner.core.config.heuristicselector.move.MoveSelectorConfig.writeRepl: 1 J
Timeline| Event Log |

12108
Statistics?00,000

o> A RREREREREEEE NN RN

05/09/2018 20:39:00 20:39:05 20:39:10 20:39:15 20:39:20 20:39:25
= StackTracel KA R ||@.® ¥ = 0
Stack Trace Count
» L void javalang. Throwable.<init> ():256 _
> T void javalang. Throwable.<init> (String):272 24|

JFR sees all exceptions (whether they were suppressed or not). There are two kinds of related events.
JFR records the total count of exceptions produced by runtime. This metric helps to identify exception
misuse. JFR can also record every single exception created, including the stack trace, although you
need to tweak the flight recording session’s configuration to get this level of detail.

Garbage Collections

GC troubleshooting typically involves digging through GC logs. JFR collects detailed information
concerning GC events, and this report visualizes this data. Almost any metric of GC present in JVM is
available here.

If you need to tune GC or troubleshoot abnormal GC pauses, this is a report to start with.

bel//lsoft 15

A brief overview of Mission Control reports

Chapter 6

Il Garbage Collections

0|8

[<No Selection= v]A;pect; [<No Selection= v]DShowconcurrent: Contained Same threads Time Range:
GCID Cause Collector Name Longest Pa # | Pause Phases Metaspace‘
39,134 Allocation Failure DefMew 2476 l—l Event Type MName Duration Start *
39,135 Allocation Failure Defew 1.040 GC Phase Pause Level1 Notify PhantomReferen... 1.525 ps o5/
39136 Allocation Failure Defew 1.967 GC Phase Pause Level 1 Reconsider SoftReferen... 1.294 ps 05/0¢
39137 Allocation Failure DefMNew 2876 GC Phase Pause Level 1 Motify Soft/WeakRefere... 2062 ps 05,0
39,138 Allocation Failure DefNew 1912 GC Phase Pause Level 1 Notify and keep alive fi... 92 ns 05/0¢
39139 Allocation Failure DefMNew 2059 GC Phase Pause Level 1 Notify PhantomPReferen... 818 ns 05/0¢
39,140 Allocation Failure DefMew 1859 GC Phase Pause Level 1 Reconsider SoftReferen... 982 ns 05/0¢
39141 Allocation Failure DefNew 1872 GC Phase Pause Level 1 Notify Soft/WeakRefere... 2035 ps 050
39142 Allocation Failure DefMew 233 - || GCPhasePause Level 1l Motify PhantomReferen... 869 ns 0504~
4] | » <[LIl | 5
a6 MiBI 1 B Used Heap
) /
o4 MB I1"‘”‘u”‘””””‘”‘m”‘n‘””‘n”u”‘“mmm“m““mm”‘“ | I’ D . Heap Space : Committed Size
Heap 32 MiB 1 jEy | Heap Space: Reserved Size
" T — B Used Heap Post GC
P
32 MiB
[Metaspace : Used
Heap PostGC 16 MIB T [.Metaspace:CDmmitted
- x] . Metaspace : Reserved
32 MiB T .Lnnge:tpause
16 MiB T [5um of Pauses
Metaspace

Longest Pause
Sum of Pauses

05/09/2019

2 T P o e N e e Y o e

e T

20:39.00

20:39.05

20:39:10

20:39:15 20

3920 20:39:25

[§ Pause Phases
[C] £ Thread Activity

1 2

VM Operations

HotSpot has a concept of VM operations ranging in types. But the critical point is that all of them

require the Stop-the-World pause. With some JVM options, you can enable logging of VM operation or

use JFR and this handy report.

VM operations are often mistaken for GC pauses (which is just one type of VM operations). Developers

tend to blame Stop-the-World on garbage collectors. This report is your first stop if the application is
experiencing Stop-the-World pauses.

Configuration and environment

bel//lsoft

16

A brief overview of Mission Control reports Chapter 6
JVM Internals (] | =
JVM Information VM Flags
IVM Start Time 05/09/2019, 19:29:43 Search the table
M Name OpenJDK 64-Bit Server VM famsg lalug Roaiy =
VM PID 1054 ActiveProcessorCount -1 Default
- AdaptiveSizeDecrementScaleFactor 4 Default
OpenJDK 64-Bit Server VM (11.0.4+11) for windows-amd64 AdaptivebizeMajorGCDecayTimes.. 10 Default
JVM Version JRE (11.0.4+11), built on Jul 18 2019 06:43:34 by "" with M5 AdaptiveSizePolicyCollectionCost... 50 Default
VC++ 158 (V52017
++ 158 (VS217) AdaptiveSizePolicyGCTimeLimitT... 5 Default
-Kmi512m -XXi+ NeverActAsServerClassMachine - AdaptiveSizePolicylnitializingSteps 20 Default
JVM Arguments K:CICompilerCount=1 -XX.-TieredComnpilation -Xi:- AdaptiveSizePolicyOutputinterval 0 Default
DoEscapelnalysis -Dlogback.level.org.optaplanner=debug X X
AdaptiveSizePolicyReadyThreshold 5 Default
AdaptiveSizePolicyWeight 10 Default
CALABDIRJUG\optaplanneritargetisurefire . .
\surefirebooter1 830812651 716718841 jar C:\LABDIRJUG i:apt“'ei'_ZETC\ED_“ihp“tpD"‘)' gs gja”:t
i aptiveTimeWeight ault =
VM Application Arguments \optaplannertarget\surefire P £,
\surefirel0457706979711945237tmp C:\LABDIRJUG JVM Flags Log
\optaplanneritarget\surefire No 'Flag Chanaed' events found
\surefire 07193322237760617789tmp g ~hanged
Start Ti M Old Val M
Shutdown Time M/A an ime ame aue i
Shutdown Reason M/A
“ 1 ¢
4 Environment (=)

CcPU

CPU Type

Mumber of Cores

Mumber of Hardware Threads

MNumber of Sockets

CPU Description

Memory

Available physical memaory
Operating System

05 Version

Intel Ivy Bridge (HT) S5E S5E2 55E3 S55E3 55E4.1 55E4.2 Core Intelgd

2
4
1

Brand: Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz, Vendor Genuinelntel

Family: vy Bridge (0:x6), Model: Ivy Bridge (0x3a), Stepping: 08
Ext. family: 00, Ext. model: (03, Type: 00, Signature: 000030622

Features: ebuc 001100800, ecx 0x7fbaedff, edw: Oxbfebfbff

Ext. features: eax: 000000000, eb:: 000000000, ece 000000001, edi 028100800
Supports: On-Chip FPU, Virtual Mede Extensions, Debugging Extensions, Page Size Extensions, Time Stamp Counter, Model Specific Registers, Physical
Address Extension, Machine Check Exceptions, CMPXCHGSEE Instruction, On-Chip APIC, Fast System Call, Memory Type Range Registers, Page Global Enable,
Machine Check Architecture, Conditional Mov Instruction, Page Attribute Table, 36-bit Page Size Extension, CLFLUSH Instruction, Debug Trace Store feature,
ACPI registers in MSR space, Intel Architecture MMX Technology, Fast Float Point Save and Restore, Streaming SIMD extensions, Streaming SIMD extensions 2,
Self-Snoop, Hyper Threading, Thermal Menitor, Streaming SIMD Extensions 3, PCLMULQDQ, 64-bit DS Area, MONITOR/MWAIT instructions, CPL Qualified
Debug Store, Virtual Machine Extensions, Safer Mode Extensions, Enhanced Intel SpeedStep technology, Thermal Moniter 2, Supplemental Streaming SIMD
Extensions 3, CMPXCHG16B, xTPR Update Control, Perfmon and Debug Capability, Process-context identifiers, Streaming SIMD extensions 4.1, Streaming
SIMD extensions 4.2, x2APIC, Popcount instruction, TSC-Deadline, AESNL, XSAVE, OSXSAVE, AVE, F16C, LAHF/SAHF instruction support, SYSCALL/SYSRET,

Execute Disable Bit, RDOTSCP, Intel 64 Architecture, Invariant TSC

157 GiB

05 Windows 7, 64 bit Build 7601 (5.1.7601.23915)

bel//lsoft

17

A brief overview of Mission Control reports

Chapter 6

L3 Processes

<No Selection=

v] Aspect: [<No Selection>

vl [7] Show concurrent:

i =

Contained Same threads Time Range:

100% T
B0% T
60% T

A0 % T

2007
1501
10071

507
Concurrent Pro...

05/09/2019

Search the table
Process Identifier
0

2076

12580

2096

11756

11200

13044

2084

13292

12680

12168

20:39:00 20:39:05 20:39:10

Command Line
[System Process]
armsvc.exe
audiodg.exe
btwdins.exe

C\Program Files (x86)\Adobe\Acrobat Reader DC\Reader\AcroCEF\Rdr...
C\Program Files (x86)\Adobe\Acrobat Reader DC\Reader\AcroCEF\Rdr...

C\Program Files (x86)\Adobe\Acrobat Reader DC\Reader\AcroRd32.exe
CM\Program Files (x86)\Adobe\Acrobat Reader DC\Reader\AcroRd32.exe
C\Program Files (x86)\Brackets\Brackets.exe

C\Program Files (x86)\Brackets\Brackets.exe

C\Program Files (x86)\Brackets\node.exe

20:39:15

First Sample

05,/08/2018, 20:39:13
05/08/2019, 20:39:13
05,/08/2018, 20:39:13
05/08/2019, 20:39:13
05/09/2018, 20:39:13
05/08/2018, 20:39:13
05/09/2018, 20:39:13
05,/08/2018, 20:39:13
05/08/2019, 20:39:13
05/08/2018, 20:39:13
05,/09/2019, 20:39:13

20:39:20

Last Sample

05/09/2019, 20:39:27
05/08,/2019, 20:39:27
05/08/2019, 20:39:27
05/08,/2019, 20:39:27
05/09,/2019, 20:39:27
05/08/2019, 20:39:27
05/09/2019, 20:39:27
05/09/2019, 20:39:27
05/08,/2019, 20:39:27
05/08/2019, 20:39:27
05/09,/2019, 20:39:27

20:39:25

l

You can send JFR files for analysis to an expert in the JVM domain. Files include JVM configuration,

hardware configuration, and even a list of other processes running on a server and competing for

resources without application.

bel//lsoft

18

Continuous flight recording Chapter 7

/. Continuous flight recording

JFR + Mission Control can be used as a free and capable Java profiler, but using them in continuous
mode can bring even more value.

To get the full benefit from continuous flight recording, you need to
» configure your JVM to be accessible via JMX;
e add JVM command-line arguments to activate Flight Recorder on startup.
A minimal command to start flight recording session on startup is the following:
-XX:StartFlightRecording=name=background,maxsize=100m
An important option is maxsize that limits how many events are retained in memory.

Now, you have JFR silently collecting events in the background. As long as the application runs fine,
you can forget about JFR being active. The default JFR profile adds very little overhead.

At the same time, you can quickly connect to JVM via Mission Control and dump accumulated events
from a problematic server, which is especially useful for tracking down problems reproducible only on
live production.

One can argue that instead of pulling data dumps from individual VMs, it is better to have a centralized
monitoring system where you can access diagnostics from any server. In theory, that will be perfect,
but arranging quality centralized monitoring is extremely challenging. Central monitoring solutions
have to compromise on the level of details.

Continuous flight recording and the ability to pull event dumps on demand are complementary to
central logging and general monitoring solutions, as you can get very detailed telemetry from JVM.

bel//lsoft 19

JDK Flight Recorder
How to use with Mission
Control bellsoft

	JDK Flight Recorder: How to use with Mission Control
	Contents
	1. Introduction
	2. What is Java Flight Recorder?
	3. What is Mission Control?
	4. How JFR + MC differ from other profiling tools
	5. How to start using Java Flight Recorder
	6. A brief overview of Mission Control reports
	Method profiling
	Memory
	Lock Instances
	File I/O and Socket I/O
	Threads
	Exceptions
	Garbage Collections
	VM Operations
	Configuration and environment

	7. Continuous flight recording

