
Liberica NIK
Selecting the Garbage Collector

Liberica NIK
Revision 1.0
October 17, 2023



Copyright © BellSoft Corporation 2018-2024.

BellSoft software contains open source software. Additional information about third party code is
available at https://bell-sw.com/third_party_licenses. You can also get more information on how to get
a copy of source code by contacting info@bell-sw.com.

THIS INFORMATION MAY CHANGE WITHOUT NOTICE. TO THE EXTENT PERMITTED BY APPLICABLE
LAW, BELLSOFT PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL BELLSOFT BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE
OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF BELLSOFT IS EXPRESSLY ADVISED
IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in this document is governed by the applicable license
agreement, which is not modified in any way by the terms of this notice.

Alpaquita, Liberica and BellSoft are trademarks or registered trademarks of BellSoft Corporation. The
registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis. Java and OpenJDK are trademarks
or registered trademarks of Oracle and/or its affiliates. Other trademarks are the property of their
respective owners and are used only for identification purposes.

https://bell-sw.com/third_party_licenses
mailto:info@bell-sw.com


Contents

1. Introducing Garbage Collection  4

2. GC options in NIK/Graal  5

Image build time options  5

Run-time options  8

3. Monitoring memory usage with JMX/JFR metrics  11

4. Getting and analyzing GC logs  12

5. Selecting proper GC for the application  13

Serial and Parallel GC performance  13

Choosing the GC  14



1. Introducing Garbage Collection

Garbage collection (GC) is an important and inevitable part of JVM that affects the overall performance
of an application. It is beneficial to know which Garbage Collector (GC) is used by the JVM running in
your Liberica NIK environment.

Liberica NIK provides three Garbage Collectors: Serial, Parallel, and Epsilon (no op).

• Serial GC is a simple, single-threaded GC algorithm that performs garbage collection in a single
thread one by one. It is suitable for small applications or systems with low memory requirements.

• Parallel GC uses multiple threads to speed up garbage collection, making it more efficient for large
applications running in a multiprocessor environment.

• Epsilon GC is a no-operation (no-op) GC that does not collect any garbage. It only handles the
allocation of memory. Once the available Java heap is exhausted, the JVM shuts down.

The information in this document is accurate as of NIK version 24.0.0.

It is important to note that Serial and Parallel GCs are production-ready in Liberica NIK 24.0.0.

Introducing Garbage Collection Chapter 1

4



2. GC options in NIK/Graal

One feature specific to AOT-compiled native images is that you can specify different options that apply
at two different stages of building and running native images. One stage is the so-called “image build
time” when Java bytecode is compiled into native code. The other is the “image run-time” when the
resulting image is executed.

Likewise, the options that control GC behavior fall into two categories. Some are applied at the image
build time, and are baked into the image. Others can be specified during the native image invocation.

You can obtain a complete list of native-image options by running the following command:

native-image --expert-options-all

Image build time options

These options are passed to native-image using -H:±Flag or -H:Setting=<value> syntax.

GC options in NIK/Graal Chapter 2

5



The following options apply to any GC during the image build time:

Option Description

-H:AlignedHeapChunkSize The size of an aligned chunk.

-H:HeapChunkHeaderPadding The Number of bytes at the beginning of
each heap chunk that are not used for
payload data, that is bytes that can be freely
used as metadata by the heap chunk
provider.

-H:LargeArrayThreshold The size at or above which an array is
allocated in its own unaligned chunk.

-H:±TreatRuntimeCodeInfoReferences
AsWeak

Determines if references from runtime-
compiled code to Java heap objects should
be treated as strong or weak.

-H:±VerifyHeap Verify the heap before and after each
collection.

-H:±ZapChunks Fill unused memory chunks with a sentinel
value.

-H:±ZapConsumedHeapChunks After use

Fill memory chunks with a sentinel value.

-H:±ZapProducedHeapChunks Before use

Fill memory chunks with a sentinel value.

The following options apply only to Serial and Parallel GC during the image build time:

GC options in NIK/Graal Chapter 2

6



Option Description

-H:±CountWriteBarriers Instrument write barriers with counters.

-H:±GreyToBlackObjRefDemographics Develop demographics of the object
references visited.

-H:±IgnoreMaxHeapSizeWhileInVMOper
ation

Ignore the maximum heap size while

-H:±ImageHeapCardMarking Enables card marking for image heap
objects, which arranges them in chunks.
Automatically enabled when supported.

-H:InitialCollectionPolicy The garbage collection policy, either
Adaptive (default) or BySpaceAndTime.

-H:MaxSurvivorSpaces Maximum number of survivor spaces.

-H:SoftRefLRUPolicyMSPerMB This number of milliseconds multiplied by
the free heap memory in MByte is the time
span for which a soft reference will keep its
referent alive after its last access.

-H:±VerifyAfterGC Verify the heap after doing a garbage
collection if VerifyHeap is enabled.

-H:±VerifyBeforeGC Verify the heap before doing a garbage
collection if VerifyHeap is enabled.

-H:±VerifyReferences Verify all object references if VerifyHeap is
enabled.

-H:±VerifyReferencesPointIntoValid
Chunk

Verify that object references point into valid
heap chunks if VerifyHeap is enabled.

GC options in NIK/Graal Chapter 2

7



Option Description

-H:±VerifyRememberedSet Verify the remembered set if VerifyHeap is
enabled.

-H:±VerifyWriteBarriers Verify write barriers.

Run-time options

Run-time options are passed to the binary created by the native-image tool using regular Java
syntax: -XX:±Flag or -XX:Setting=<value>. In addition, you can supply them to the native-
image invocation using -R:±Flag or -R:Setting=<value> (note the difference from image build
time options which use -H:). The resulting binary is compiled with the default values you provided.

GC options in NIK/Graal Chapter 2

8



The following options apply to any GC during the image startup:

Option Description

-H:±DisableExplicitGC Ignore calls to System.gc().

-H:±ExitOnOutOfMemoryError Exit on the first occurrence of an out-of-
memory error that is thrown because the
Java heap is out of memory.

-H:MaxHeapSize The maximum heap size at run-time, in
bytes.

-H:MaxNewSize The maximum size of the young generation
at run-time, in bytes

-H:MaximumHeapSizePercent The maximum heap size as percentage of
physical memory.

-H:MaximumYoungGenerationSizePerce
nt

The maximum size of the young generation
as a percentage of the maximum heap size.

-H:MinHeapSize The minimum heap size at run-time, in
bytes.

-H:±PrintGC Print summary GC information after each
collection.

-H:ReservedAddressSpaceSize The number of bytes that should be reserved
for the heap address space.

-H:±VerboseGC Print more information about the heap
before and after each collection.

GC options in NIK/Graal Chapter 2

9



The following options apply only to Serial and Parallel GC during the image startup:

Option Description

-H:PercentTimeInIncrementalCollect
ion

Percentage of total collection time that
should be spent on young generation
collections if the collection policy
BySpaceAndTime is used.

-H:MaxHeapFree The maximum free bytes reserved for
allocations, in bytes (0 for automatic
according to GC policy).

-H:±TraceHeapChunks Trace heap chunks during collections if
+VerboseGC is set.

-H:±CollectYoungGenerationSeparate
ly

Determines if a full GC collects the young
generation separately or together with the
old generation.

-H:±PrintGCSummary Print summary GC information after
application main method returns.

-H:±PrintGCTimes Print the time for each of the phases of each
collection if +VerboseGC is set.

One additional option applies exclusively to Parallel GC during the image startup:

Option Description

ParallelGCThreads Number of GC worker threads.

GC options in NIK/Graal Chapter 2

10



3. Monitoring memory usage with
JMX/JFR metrics

Native images support MemoryMXBean and MemoryPoolMXBean JMX interfaces. This article explains
how they can be used for monitoring memory.

The following JFR events are supported:

• jdk.AllocationRequiringGC

• jdk.GCHeapSummary

• jdk.GCPhasePause

• jdk.GCPhasePauseLevel

• jdk.GarbageCollection

• jdk.ObjectAllocationInNewTLAB

• jdk.ObjectAllocationOutsideTLAB

• jdk.ObjectCount

• jdk.ObjectCountAfterGC

• jdk.SystemGC

Monitoring memory usage with JMX/JFR metrics Chapter 3

11

https://www.graalvm.org/latest/reference-manual/native-image/guides/build-and-run-native-executable-with-remote-jmx/


4. Getting and analyzing GC logs

The following options help you get and analyze GC logs.

Before you start analyzing GC logs, you can check the type of GC used in your system by running the
-Xlog:gc=info command.

• -XX:+PrintGC - Produces logging output similar to Java HotSpot when used at image run-time.

• -XX:+VerboseGC - Provides more verbose output showing how each GC round has affected the
heap.

• XX:+PrintGCTimes - Additionaly shows how long is each GC work phase.

Getting and analyzing GC logs Chapter 4

12



5. Selecting proper GC for the
application

Important:

Serial and Parallel GCs are production-ready in Liberica NIK 24.0.0.

Serial and Parallel GC performance

Lower pause times have effect on application performance. If a particular service needs to have the
least possible response times, Serial GC is not your choice.

The Parallel GC implementation extends a variety of GC types available in Liberica NIK and allows to
improve response time.

Corresponding pause results were measured by natively compiling and running HyperAlloc benchmark
from Heapothesys project. Numbers in the chart below are GC pause times in milliseconds. The
benchmark was executed on Ubuntu, 8-core i7 CPU with 8 worker threads and incremental collection
turned off.

Selecting proper GC for the application Chapter 5

13

https://github.com/corretto/heapothesys


For more information, see Parallel garbage collector.

Choosing the GC

Serial GC is the oldest garbage collection mechanism existing from the early days of Java and has
minimal overhead. It is suitable for memory and CPU constraint devices, but there can be long pauses
in application work, especially if a significant amount of memory is involved.

If you have a large application running on a multicore system, we recommend using Parallel GC
because it has more predictable pause time while achieving higher throughput and may shorten GC
pauses.

Epsilon GC is useful for measuring program startup time, because it removes fluctuations related to
memory management.

Selecting proper GC for the application Chapter 5

14

https://github.com/oracle/graal/pull/5362


Selecting the Garbage
Collector

Liberica NIK


	Liberica NIK: Selecting the Garbage Collector
	Contents
	1. Introducing Garbage Collection
	2. GC options in NIK/Graal
	Image build time options
	Run-time options

	3. Monitoring memory usage with JMX/JFR metrics
	4. Getting and analyzing GC logs
	5. Selecting proper GC for the application
	Serial and Parallel GC performance
	Choosing the GC


